August 30th 2016

CLIFv2.3 user manual

| |F

http://clif.ow2.0rg/

Copyright © 2006-2013 France Telecom SA
Copyright © 2014-2016 Orange SA

http://clif.ow2.org/

CLIF user manual guide

Table of contents

L. INEEOAUCHION. cccceieeeeerrerssneereececssssssannseseeccesssssensasssssssssssssssssssssssssssssssnsassssssssssssssansssssssasssssssssssssssssss 5
2. Key concepts .6
3. Registry and CLIF servers 8
O B A 15 (0 1 F: 1 (ORI 8
3.2. RUNNING & REGISIY . .eeeuiiiiiiiiiiiieeeiieeeite ettt ettt ettt sit e sttt e st e e st e e sabe e e e e ssnabtaeeessennnneas 8
3.3. Configuring and running @ CLIE SEIVET........ccoouiiiiiiiiiiie ittt 8

Q. PIODES.ccccccceeerrcrsnneeeeececssssssnsassessecssssssssnssssssssssssssssnssssssssssssssssanasssssssssssssnnssssssssssssssssssssssssssssssssssssans 9
I 1 5 0] 1 2| (< UU U SEUUPUN 9
VN7 VI P21 0) (o 0) 40 =TRSO 9
G201, CPUDPFODC ..ot e e e e e e ettt e e e e ba e e e e s abaee e e nnsstbabaaeaeeeeens 10
B.2.2. AISK PTODC. ...ttt e et e e e ettt e e et e et ae e e et e e e e nbaaaeeennraes 10
4.2.3. HICIOFY PEODE.c.......eoeeeieeeeeee ettt e et e ettt e e et e e s st ee e s s abeeesennssasaaaeaaaaaaaeeens 11
4.2.4. REIWOIK PTODE. ...ttt ettt e e et e e st e e et e e e s nssaaaaeaaaaeaeeeens 12
B.2.5. JUILPEODC.cooeeeeeeeee ettt e et e e e e e ettt e e e et e e e et e e e e btbttaaaeaaaaeens 13
4.2.6. JIMX_JUITLPITODC.coooeeeeeeaieieieeiieieieeeieeeeeeeeeeeeee ettt ettt ettt e et et et et et e e e e e et e e e e enaaans 14
A 113 1 0] /O PPPPPPPPR 15

5. Load injectors and ISA C.......ccuueicireicnsanisssancsssascssssscssssssssssssssasssssasesssssesssssesssssasssssssassssssssssssssss 16
5.1, RALOMALE. . .vveeieieeeeeiireeeeee ettt e e eeect e e e e e e eeseettarreeeeeeeeeeeesssaeeeseeeeesassssseeesssesrnsssrsrsnnes 16
5.2. ISAC is a Scenario Architecture fOr CLIFE............uuuiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaans 16
5.2.1. DOIAVIOTS. ..vveeeeeooeeecieeeeiie ettt e e e e ettt e e e e e e ee ettt ae e e e e e e eesesaraaeeaeeeeeennanes 16
5.2.2. LOAA PTOSILES........eoeeaeeeeeeeeeeeeee ettt ettt e et e e et e e e e ba e e e e raaeeeeasssaaaaaeaeeas 16
5.2.3. ISAC PLUG ISttt e ettt e e e et e e e e st e e e e e abaeeeesaasaee e e ssaaeaeenssaseaeeas 16
5.2.4. Writing an ISAC SCEIATTO.uueeeeeeeeeeeeciireeeeeeeeeeeeeeiieeeeeseeeeeeeiiiseeeseeeeeessiisrsseseseeeesrnnes 17
5.2.5. Recording an ISAC scenario fOr HTTP............ccccoueeeeeeeeeeeeciireeeeeeeeeeeeeiiineeeeeseeeeeeeeennnns 17
5.2.6. Deploving and executing an ISAC SCONATIO...........ccccevveeeeeeeeeeeeeiieeeeeeeeeeeeeeeeaeaeeeeeeeeenns 18

5.3. Synchronization PSEUAO-TNJECIOT.ccervvreeeerireeeeeeitreeeeeeitreeeeeereeeeeeiteeeeeeeeeessnnsrrrreeeeaeeeaeens 18
5.3.1. RATIONALE. ...ttt e e e e et et a e e e e e eeetbaareeaeeeeeenesssssessnenes 18
5.3.2. USGEE...uuueeaeeeeeeeeeeeeeeeeeee e eetee e e et e e e st e e e s aa e e e e s aaeeeeaaaaeaeeanssaeeeeassbeae e e sssaaataaaaaaaaaeens 19
5.3.3 ALATIS. ...ttt e e ettt e e e e ee et taaraaaaeeeeantrraerraaaa 19

6. Eclipse-based graphical uSer iNterface......ccouiercrercsssarcssnrcssnicssanssssanssssasssssasesssasesssssssassssssansss 20
Lo R 115 0 Y6 11 Te] 5 (o) 4 FOR OO RN 20
0.2. RUN CLIE TETISIIY ...oeiiiiiiieitiiiieeeeeeeeeeiitieeeeeeeeeeeeettareeeeeeeesssaaareeeeseesssssssasaseeesessessssssseresessersnnes 20

(O T N i o) P W= a 15 o) o OO PRPRR 21
6.4. ISAC SCENATIO ©AILIOMuuuveeereeaeer—e—————————r————————e———e——e————————aae 22
6.5. test deployment and EXECULION.uuvvveeieeeeeiiiirreeeeeeeeeeeierrereeeeeeeeeesisrrrreeeeeeseissrrerreeeesessennennns 23

7. Java Swing-based graphical user interface........cceerercrcrnrcssnrcssanicssanicssaseossasesssasesssasesssnssscsssanans 24
7 B 15 (06 L1 1] o) o WO USRS 24
7.2, RUN CLIE TEGISIIY . uvvvviiieeeiiieiiireeeeeeeeeeeecitreeeeeeeeeeeeetrreeeeeeeeeeesesssreeeseeeeesesiarsrreeeeeeeeesesnnennss 24
7.3. Test plan @dition LADIE..........ccovviurrereieeee ettt eeere e e eeee e e e e e e eeesaarrrereeeeeeeeeeeeeeeas 25
7.4. Performance and resource usage MONIOTING.ccvveeerureerrreernureersireesiereesireesseeesseeessnnreeeeens 26
S S S (<5 1L O 26
T AT 0] - 0 1013 1 L DTSR 26
A X e Yo) F 14153 41 RPN 26

August 30th 2016

7.7 0. BASIC QUALYZOTcccevveieeeieeeeeeieeeeeetee et e e tvee e e e veee e s saaaeeeestaeeeesssaeeeeenssaeeeennsseeees 27
7.7.2. QUICK GTraAPRICAL QIAIYZOToee it e e e e e e e e e seaaan 27
R T & (51100 111S) 1L PO PO PP PRRRTPUURPP 27
8. Command line user interface 28
8.1, INEIOAUCTION.ceeiiuirrreieieeeeeeeetie et e e e e eeeee e e e e e eeeeeatreeeeeeeeeeesetassaeeseeeeesestasrreeseeeesensnnssrrennnes 28
L O B 07110 117 1 U 28
8.1.2. Choosing the right command [iNe iNLEITACE.ccoueeeeeccueeeeeecirieeeeeiieeeeecreeeeeeraeeans 28
8.2. Shell script-based command liNe INtEITACE.ccovvvvurrririieiiiiieeeeee e e e 28
8.2.1. Configure the CLIE @NVIFORIMEAL..............ccccueeeeeeireeeeeeieeeeeeeieeeeeeeiaeseeeeiaeeeeeeeaeeeeesianeeens 29
8.2.2. RUN THE CLIF FEQISITY....cccoeeuvveeeeeeeeeeeeeciieeeeeee e eeeeeeiaaeee e e e e e eeeiitaaaeee s e e e eeeetaaaeaeaeeeeneeeeaeeaens 29
8.2.3. RUN G CLIE SOFVOF.........ccooeeeevreeeeeeeeeeeeeiieeeeeee e eeeeeeiitaeeeee e e e eeeeeiiaaeeeeeeeeeenineeseeeeeeeeaaaanaaes 30
8.2.4. Print names Of re@istered CLIF SCrVOFS.........cccvueeeeeieeeeeeciireeeeeeeeeeieeiisiiseeeseeeeeeeeeaeens 30
8.2.5. Wait for regiStry And CLIF SCEFVEFS..........cccccvvuveeeieeeeeeeieiieeeeeeeeeeeeeiiiiiisseeeseeeeeeeeaaaens 30
8.2.6. DePLOY A LOST PLAT ..ottt e et e e e s e e e e e e e e e aa e 30
8.2.7. INTEIALIZO G IEW FOST...uvvveeeeeeeeeeeeeceeeeeee e eeee et e e e e e e e e e e e e e e e eeeaaaeaaaes 31
LI TN Y 171 A B (Y AU TSR 31
8.2.9. SUSPEIA G LOSL..c...ueeeeeeeeiieeeeeee ettt et et e et e et e ettt e st e e s bt e e e e e eatbeeeeeeennbaaeeens 31
8.2.10. ROSUINE (U ECSL......coooeeeeeeeeeeeeeeeciieeeee et eeeee e e e et e e e e e e e et e e e eeeeeeens 31
L I BN 1) 1 L PO SRR 31
8.2.12. WAIL FOF @NA OF TOST.......vvveeeeeeeeeeeeeceeeeee e eeeeeecieeeee et eeeeeteee e e e e e e e sraaeeee e e e eesseasaseeeees 32
8.2.13. COLCCE IMEASUTCIICHLS.vveeoeeeeeeeereeeeeeeeeeeeeeieeeee et eeeeeiiaeee e e e e e eeritrareeeeeeeeeeeeeeaeeeens 32
8.2.14. FUll run Of @ deplOY@d tEST...........ccuueeeeeeeeeeeeeceeeeeeeieeeeeeeieeeeeeeeeeeeeeiaeee e eereeaaaea e e e 32
8.2.15. Deployment and fULL TSt FUN.............c..oeeeeecuveeeeeeieeeeeeeieeeeeeeieeeeeeeiaeeeeeeiaeeeeeeeaeeeeeeaeeeens 32
8.2.16. Print injector OF PrOBE PAFYAIICIETS.ccoeeiveeeeeeeeeeieiiieeeeeeeeeeeesiiireeessseeeesessnneess 32
8.2.17. Change an injector or probe paramerter VALUC.cccceeveeeeeieeeeeeeiiiiiiieeeeeeeeeeeeeeann, 33
8.2.18. PHIE PFODE RIP.........ccoooeveeeiii ettt eeee e e ee e e e e e eaeens 33
8.2.19. Print reSPONSE tIMES SIALISTICSuvvvveeeeeeeeeeeeiirreeeeeeeeeeieeiisreeeeeeeeeesissssssnnseeeseeeeaesseseens 33
8.2.20. Get CLIF VersSion MMfOFHIATION.cccuveeeeeeeeeeeeeiireeeeeeeeeeeeeiisreeseeseesensesssnenseeeeeeeeens 33
8.2.21. RUN GFAPRICAL LOOLS. ...t e e e e ee e e e eeeeaanes 33
8.3. ant-based command-liNe INEITACE.coeeiiiiiiiiiieiiiee et e e e e e e e e 34
8.3.1. Configure the CLIF environment: CONLIg........c.ouuvueeriueerieeenireeesiueeesreessnsreeesesssseeeeeens 34
8.3.2. Run CLIF ReZISIIY: TOGISTIY........ccoeveeeiiieieiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 35
8.3.3. RUN G CLIE SCIVEE: SCEVOK ...uuuveeeeeieeeeeeeieieiiesiesessssssssisssissssssssssssssnsssssssssssssnnsesssessnnn 35
8.3.4. Print the list of available CLIF Servers: [IStSCrVErsS.......cccuueeeiiiieieeeiiiiiiiiieeiieeeeeeneennn, 35
8.3.5. Wait for registry and CLIF SErvers: WATLSCIVELS.........ccccueeeeeeeeeeeeeiieeeeeeeeeeeiesiineeeseeeeens 35
8.3.6. Test plan deployment: depPlOy..............cc..ueeeeccueeieeciieeeeeciieeeeeeieeeeeeetee e e e e e e e e e e 35
8.3.7. TeSt iNItIALIZALION. TNIL..........cooeeeeeeeeeeeeeeeeeeeieeeeeee e eee e e e e e e e s s e e e e eeeeaaaeas 35
8.3.8. TSt CXCCULION STATL: STATL. . .uvvvvveeeeeereeeeeeeaeaesesesssssssssssssessrssssessssssrersrarere.eserrraaaaeees 35
8.3.9. Suspend test eXeCUTION: SUSPEIU.cooeevviueeeeeieeeeeeeiiieeeeeeeeeeeieiiieeeeeeeeeieeeeeeeeeeeens 36
8.3.10. ReSume teSt XCCULION. FESUIMEC.cccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeseseeeseeessssssiineeesssesnes 36
8.3.11. STOD 1ESt CXCCULION. STOD.....uueveveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseessessessssssssssssssssssriaeeesssssraaaaaasees 36
8.3.12. Wait for a test execUtion t0 terminare: JOIMN............uuueeeeeeeeeeeurrreeeeeeeieeeerrenenniiaaaeaaeeens 36
8.3.13. Collect test results (measurements): COLLECE............couuvvvvuueeiiiiiiiieiiiieiieeeiiieeieeeieeeeanan, 36
8.3.14. Shortcut for full teSt eXeCUtiONn PrOCESS: FUM.........ccovuveeeeeeeeeeeeiiieeeeeeeeeeeieiiiireeseeeeeeeaeen, 36
8.3.15. Shortcut for full deployment and execution process: lAUNCH.ccccueeeeeennen.... 36
8.3.16. Get specific runtime parameters of a probe or injector: PArAMS.ccceeeeeuvvenannn. 36

CLIF user manual guide

8.3.17. Change a runtime parameter of a probe or injector: change...................................... 36
8.3.18. Get help about a probe's arguments: probehelp....................ooveveeeeeveeiiiiiieiiiiaannaannn, 36
8.3.19. Generate and print a quick statistical report: QUICKSIALS.......................cccoevveveeeeeennnnn. 37
8.3.20. Get CLIF version infOrMALION.couueee e 37
8.3.21. Run grapliCAl 1OOLS.................coooeeiiiiiiiiiiiiiiiiii 37

9. Using CLIF With JeNKINS.....ccceeeressssncsssnecssasecssssesssssesssssesssssesssssesssssssssssosssssssssssssssssssssssssssssssssses 38
9.1. What t0 dO WIth Gt2.....cceiiiiiiiiiiiiiiiie ettt e eee e e e e e e ee b e e e e e e eeeennaaaereeeeeas 38
9.2. How to create a CLIF teSt JOD......ccoeiiirriiiiieeeeeeicireee e e e ettt eeeeeeerareeeeeeeeeesattssssannannnnes 39
L B 071110 117 1 O 39
9.2.2. Create a CLIF test Job Via SVIN OF GIT..........ueeeeeieeeeieeiiieeeeieeeeeeeeiiieeeeeeeeeee e, 39
9.2.3. Import a CLIF test via the "WiZArd"...................coooumeiviieeeiieeieeieeiiieeeeeeeeeeieeeeeeeeeeeeeenans 40

10. Test results and MEASUTEINEIILS.ccceerrrrsrreeeeeeccccsssssssssesseccessssssssssssascesssssssssssssssssssssssssssssssssssss 41
11. Licenses weeed2
Appendix A;: SYSteIM PrOPEITI€S..ccceccersressssrcsssaressaresssssessssssssssssssasssssssssssasssssssssssssssssasssssssssssssssssssse 43
Appendix B: Class and resource files (remote) 10ading........c.cceeeeeveesuecsvrssenseecsansensaecsaesssaeessanecans 49
Appendix C: ISAC scenario DTD.......coiiiiinniiiiecssnnsnissnnissncsssnsssnssssnsssesssssssssssssssssasssssssssssasssssss 50
Appendix D: ISAC eXeCution eNEINE........cccceeveresresssncssnisssnsssnesssisssnesssssssnesssssssssssssasssssssssssssssssssans 53

August 30th 2016

1. Introduction

CLIF is a component-oriented software framework written in Java, designed for load testing
purposes of any kind of target system. By load testing, we mean generating traffic on a System
Under Test in order to measure its performance, typically in terms of request response time or
throughput, and assess its scalability and limits, while observing the computing resources usage.

Basically, CLIF offers the following features:

+ deployment, remote control and monitoring of distributed load injectors;
+ deployment, remote control and monitoring of distributed probes;
- final collection of measurements produced by these distributed probes and load injectors.

Probes measure usage of
arbitrary computing resources

arbitrary

Execution control and
monitoring of load

injectors and resource _ resource
probes. probes

resource
probes

Load injectors :

* send requests, wait for replies, measure response times
* according to a given scenario

« for example, emulating the load of a number of real users

Analysis tools for these measurements will be provided as soon as possible. For the time being, all
measurements are available as CSV (comma separated values)-formated text files.

Thanks to its component-based framework approach, CLIF is easily customizable and extensible to
particular needs, for example, in terms of specific injectors and probes, definition of load generation
scenarios, storage of measurements, user (tester) skills, integration to a test management platform,
etc. For instance, user interfaces are available as command-line tools, Java Swing-based GUI and
Eclipse-based GUI.

See installation manual for CLIF installation.

CLIF user manual guide

2. Key concepts

blade

an active component that can be deployed within a CLIF application, under control of the
supervisor component, that provides statistical information about its execution (for monitoring
purpose), and produce results stored by the storage component. Blades exist either as load
injectors or probes.

CLIF application

set of deployed components making it possible to run a test. A CLIF application is a
distributed component holding as sub-components: one supervisor, one storage, and an
arbitrary number of probes and load injectors (aka blades).

CLIF server

a JVM with a bootstrap component that will locally handle blade deployment requests from
the supervisor. In other words, one must run a CLIF server on a given computer in order to be
able to deploy load injectors and probes. CLIF server have a name. They register themselves in
the Registry with this name in order to be found by the deployment process.

code server

the code server is responsible for delivering Java byte-code and resource files on demand
during the deployment process. This is achieved through a socket server with a specific
protocol. As of current version, files greater than 2GB cannot be transfered.

Common CLIF usages create a dedicated code server for each test deployment, However, it is
also possible to share a common code server in order to support several test deployments in
parallel.

collect, collection

action of getting all measurements, possibly disseminated through the blades by the storage
proxy feature, into the storage component. Collection should not occur before a test is
terminated.

deployment

local or remote instantiation of load injectors and probes (aka blades). During this process,
Java byte-code and resource files may be loaded from the code server, through the network,
and to the target JVM of the blade being deployed.

load injector

a component that conforms to the blade component type, whose activity consists in generating
traffic on an arbitrary SUT, using arbitrary protocols, according to an arbitrary scenario.

probe

a component that conforms to the blade component type, whose activity consists in measuring
the usage of an arbitrary computing resource. Probes may be deployed at the SUT's side, in
order to better analyze and understand its performance, as well as at the load injectors' side, to
check that they are performing all right (since saturating injectors may result in unreliable
measurements or violated load scenarios).

(load) scenario

optional concept referring to the way a single load injector generates traffic, for instance by
emulating the load of a variable number of users performing a variety of requests on the SUT.
In other words, a scenario defines both shape and content of the traffic generated by a load
1njector.

August 30th 2016

Storage

centralized component for storing measurements produced by load injectors and probes (aka
blades). The storage component is typically associated to a storage proxy feature supported by
each blade.

Storage proxy

local buffering of measurements feature provided by blades in order to avoid flooding the
network and the storage component, which could also disturb the test and spoil measurements.

Supervisor or supervision console

component responsible for controlling and monitoring of a test execution.

System under test (SUT)

an arbitrary system one wants to assess the performance of. It is typically composed of one or
several computers, networks, etc. It has to be reachable, either directly or indirectly via some
gateway, native library or any wrapping mechanism, from the Java Virtual Machine where
CLIF servers are running.

Registry

a distributed naming service used by the deployment process to lookup CLIF servers and
deploy load injectors and probes.

Test (execution)

execution (shot) of an already deployed test plan. A test ends under 3 possible conditions:
completed, manually stopped or self-aborted.

Test plan

specifies a set of distributed load injectors and probes, including their instantiation arguments
and the name of the CLIF servers where they must be deployed.

CLIF user manual guide

3. Registry and CLIF servers

3.1. Rationale

CLIF servers are necessary to deploy any test plan, since they host load injectors and probes. A
CLIF server is identified by a name, which is registered in a Registry. In order to run, CLIF servers
must be able to find this Registry, which implies:

1. that the Registry must be running before a CLIF server can be launched;

2. that parameters must be given to tell CLIF servers where to find the Registry.

3.2. Running a Registry

There are three ways of starting a Registry: running the Java Swing console GUI (section 7), using
the Eclipse-based console GUI (section 6), or using the appropriate command (see subsection 8.2.2
or 8.3.2).

3.3. Configuring and running a CLIF server

A CLIF server requires a CLIF runtime environment, providing the CLIF command-line interface,
such as the CLIF server or the CLIF Swing console. Refer to commands described by subsections
8.2.1/8.3.1 and 8.2.3/8.3.3 for details about configuring CLIF and running a CLIF server.

For more information, refer to the appendix on System properties in Appendix A page 43.

August 30th 2016

4. Probes

4.1. Rationale

When load testing, it is often a good idea to check the usage of computing resources, both at the
SUT side and the injectors' side. For instance, one may imagine system probes measuring CPU
usage percentage, memory consumption, network bandwidth, etc. But other probes may be
imagined that measure the size of a request queue length, a cache usage, or any activity data of any
kind of middleware/software element involved in the SUT.

With CLIF, you may include probes in a test plan, as a complement to load injectors. Probes are
supposed to have their own activity, typically (but not necessarily) consisting in polling a resource
to measure its usage. All measurements are available from the Storage component once the test
execution is over and the collection process has completed, while statistical values may be retrieved
by the supervision console for monitoring purpose during test execution, directly from the probe.
These statistical values are moving statistics computing on the period between two consecutive
retrievals.

4.2. Available probes

Probes delivered with CLIF all consist in a periodic measure of the resource. They all take two
arguments that must be specified in the test plan: the polling period (in milliseconds) and the
execution duration (in seconds). Although probes start measuring once initialized for convenience,
this execution time is counted once actually running (i.e. started and not suspended). When
terminated, no measure is performed anymore.

To set a probe in a test plan:

- enter its family name as the “class name” information field;

- select the “probe” type;

- select the CLIF server where to deploy this probe, making sure that the target CLIF server
actually runs on a computing environment (hardware, operating system or whatever) that is
compatible with the probe family (see table below);

- enter the specific argument line, as explained hereafter.

Probes are specifically implemented for a variety of operating systems and architectures:

« Linux,

« FreeBSD,

+ Mac OSX®,
« Windows®,
- Solaris®,

.- AIX®,

. HP-UX

CLIF user manual guide

4.2.1. cpu probe

family/class name |cpu
measurements - %CPU

« %CPU user

« %CPU kernel
alarms none

2 arguments

polling period (ms), execution duration (s)
Example: 1000 60

4.2.2. disk probe

family/class name

disk

measurements

- issued reads

- read throughput (kBytes/s)
- issued writes

- write throughput (kBytes/s)
+ IO time (micros)

.+ queue

- free space (kBytes)

- used space %

. free files

. used files %

alarms

none

3 arguments

polling period (ms), execution duration (s), partition mount point
Examples:

+ 1000 60 /usr/local (Linux/Unix)

« 1000 60 C:\ (Windows)

Refer to subsection 8.2.18 or 8.3.18 to get the list of available partitions'
mount points on a particular host. This list is also returned by the error
message when the given mount point is not correct.

10

4.2.3. memory probe

August 30th 2016

family/class name

memory

measurements

+ % used ram

+ used ram (MB)
+ free ram (MB)

- free swap (MB)
+ % used swap

- used swap(MB)

alarms

none

2 arguments

polling period (ms), execution duration (s)
Example: 1000 60

11

CLIF user manual guide

4.2.4. network probe

family/class name

network

measurements .

receive throughput (bit/s)
packets received
transmit throughput (bit/s)
packets transmitted
receive errors

receive overruns

receive drops

transmit errors

transmit overruns
transmit drops

transmit collisions

alarms

none

3 arguments

polling period (ms), execution duration (s), network interface identifier
At your own convenience, the network interface identifier may be one of the
followings:

the network interface name. It is easy to know on Linux/Unix from the
output of command ifconfig. It is not directly available on Windows,
unless using the CLIF utility described at subsection 8.2.18 and 8.3.18.
the network interface's IP address - always easy to know on any system,
for example, from the output of command ifconfig on Linux/Unix, or
command ipconfig on Windows. The drawback is that this address may
change from one system boot to another when the network interface
configuration is not static (use of DHCP).

the network interface description. It is the same as the network interface
name on Linux/Unix. On Windows, the description is given by the
system command ipconfig /all, but take care to discard all white
space characters.

In any case, CLIF provides a utility to get the list of available network
interfaces, with their name, IP address and description, on a particular host
(refer to subsection 8.2.18 or 8.3.18). This list is also returned by the error
message when the given network interface identifier is not correct.

Examples:

1000
1000

1000

60 etho0 (Linux)
60 192.168.1.1

60 BroadcomNetXtreme57xxGigabitController (Windows)

12

4.2.5. jvm probe

August 30th 2016

family/class name

jvm

measurements « free memory (MB)
« used memory %
- free usable memory %
alarms An alarm with severity level “Info” is generated on each JVM garbage

collection.

2 arguments

polling period (ms), execution duration (s)
Example: 1000 60

notes

This probe must be deployed in the JVM to monitor, which involves installing
and integrating a CLIF server to the JVM(s) of the system under test.

In certain conditions, some garbage collection alarms may be missed.

This probe is system-independent.

13

CLIF user manual guide

4.2.6. jmx_jvm probe

family/class name

jmx_jvm

measurements « free memory (MB)
« used memory %
- free usable memory %
alarms An alarm with severity level “Warning” is generated when the connection

with the JMX agent of the target JVM could not be established.

3 arguments

polling period (ms), execution duration (s), configuration file name

The configuration file must set these properties:

username and password used for the JMX connection
server.user.name =

server.user.password =

connection parameters to the MBean server
server.host.name =

server.host.port =

server.connection.protocol = rmi
server.jmx.connection.jndiroot = /jndi/iiop://
server.jmx.protocol provider package = com.sun.jmx.remote.protocol
server.jmx.location =

server.jmx.mbeanservername =

Refer to the documentation of your Java runtime to find out how to activate
and contact its JMX agent.
Example: 1000 60 jonasjvm.props

with the following content for file jonasjvm.props:

WARNING: activate first jvm jmx connection by adding option

-Dcom.sun.management.jmxremote to JONAS OPTS
server.host.name=target JVM host

server.host.port=1099

server.connection.protocol=rmi
server.jmx.connection.jndiroot=/jndi/rmi://
server.jmx.protocol provider package=com.sun.jmx.remote.protocol
server.jmx.location=
server.jmx.mbeanservername=jrmpconnector_jonas

notes

This probe is a “remote” probe in that it may be deployed anywhere, and
remotely interrogates the target JVM. The advantage is that it does not require
to install and integrate a CLIF runtime to the target system. The drawback is
that it produces some network traffic during test executions (although it
should be a small traffic).

This probe is system-independent but is only able to monitor a Sun/Oracle
JVM.

14

August 30th 2016

4.2.7. rtp probe

family/class name |rtp

measurements « number of packets per second

« cumulative number of packets lost

+ minimum time jitter (ms)

+ maximum time jitter (ms)

+ average time jitter (ms)

- standard deviation of time jitter (ms)
« number of jumps per second

« number of inversions per second

alarms none
arguments polling period (ms), execution duration (s), port or port range to monitor
Examples:

+ 1000 60 40000-40002 monitor ports 40000 to 40002
« 1000 60 40000 monitor port 40000
« 1000 60 40000-40004/2 monitor ports 40000, 40002, 40004

note This probe is system-independent

15

CLIF user manual guide

5. Load injectors and ISAC

5.1. Rationale

Load injectors are set in a CLIF test plan in order to generate traffic on the SUT. With CLIF, you
may use and imagine any kind of way to define and execute your load scenarios, on any kind of
SUT. You may even mix a variety of load injectors in the same test plan. This is the reason why you
must set a class name for each load injector you define in a test plan, and set an arbitrary line of
arguments, specifically to the actual load injector you use. Fortunately for non-programmers, CLIF
comes with the ISAC extension in order to provide an easy, powerful and user-friendly way to
define load scenarios. Luckily for Java programmers, they may also define their own load injectors.

5.2. ISAC is a Scenario Architecture for CLIF

With ISAC, testers are given a way to define load scenarios by combining:

definitions of elementary behaviors, typically representing users;
optional definitions of load profiles setting the population (i.e. the number of active
instances) of each behavior as a function of time.

5.2.1. behaviors

An ISAC behavior basically consists in a sequence of actions (requests) on the SUT interlaced with
delays (think times). It may be enriched with the following constructs:

conditional loop: while <condition>

conditional branching: i f <condition> then <true_branch> e1se <false_branch>
probabilistic branching: nchoice choice<weight 1, branch_1> choice<weight 2,
branch_2> ... choice<weight_n, branch_n>

where weight_i is an integer representing the chance of executing branch_i (in other
words, the probability of executing branch_i equals weight_i divided by > weight_j)
preemptive condition: preemptive <condition, branch>

program <branch> will exit as soon as <condition> is false (this condition is actually
evaluated before executing each instruction in the branch)

5.2.2. load profiles

Load profiles enables predefining how the population of each behavior will evolve, by setting the
number of active instances according to time. A load profile is a sequence of lines or squares. For
each load profile, a flag states if active instances shall be stopped to enforce a decrease of the
population, or if the extra behaviors shall complete in a kind of a “lazy” approach.

5.2.3. ISAC plug-ins

A behavior can be understood as a logic definition, a kind of a skeleton. In order to actually
generate traffic on the SUT, this skeleton must be associated to one or more ISAC plug-ins. Plug-
ins are external Java libraries, that are responsible for:

16

August 30th 2016

- performing actions (i.e. generating requests) on the SUT, whose response times will be
measured, using and managing specific protocols (e.g. HTTP, DNS, JDBC, TCP/IP, DHCP,
SIP, LDAP or whatever);

« providing conditions used by the behaviors' conditional statements (if-then-else, while,
preemptive);

+ providing timers to implement delays (think time), for example with specific random
distributions or computed in some arbitrary way;

« providing ad hoc controls for the plug-in itself (e.g. to change some settings);

- providing support for external data provisioning (e.g. a database of product references or a file
containing identifier-password pairs for some user accounts), used as parameters by the
behaviors.

5.2.4. Writing an ISAC scenario

ISAC scenarios are stored in and read from XML files, with extension ".xis" (standing for XML
Isac Scenario). An ISAC scenario holds three main sections:

1. a section for plug-in imports, where default/initialization parameters can be set. A plug-in may
be imported more than once if necessary: for each imported plug-in, each instance of each
behavior will hold a sort of private context (called session object). Each imported plug-in is
designated via a unique identifier.

2. a section for behaviors definition. All actions (aka samples), conditions (aka tests), controls and
delays (aka timers) must refer to an imported plug-in using its identifier. For each call to the
plug-in, specific parameter strings may be set. Those strings may hold variables: when the
pattern ${plugin-identifier:key} 1s found, it is replaced at runtime by a value that the
designated plug-in associates with the provided key string. The designated plug-in must be a
"data provider" type plug-in, and the interpretation of the key depends on it (refer to the
documentation of the data provider plug-in).

3. an optional section for load profiles, with (at most) one profile per behavior.

The most user-friendly way to edit a scenario is to use the Eclipse-based ISAC graphical editor (see
section 6). The alternative is to use an XML or text editor (the DTD of ISAC scenarios is given in
appendix page 50).

5.2.5. Recording an ISAC scenario for HTTP

In order to make realistic scenarios corresponding to real users behaviors, web interactions
(sessions) can be recorded in ISAC scenario. It consists in using a recording HTTP proxy called
MaxQ, available from the download section of CLIF's forge (http://forge.ow2.org/projects/clif/), as
well as from tigris.org open source community (http://maxgq.tigris.org/). MasQ will generate an
ISAC scenario with all performed HTTP requests, and possibly all think times elapsed between two
consecutive requests.

This Java tool may be used either as a standalone tool, or through an Eclipse wizard embedded in
CLIF's Eclipse-based console (see section 6).

To record an ISAC scenario with the standalone version of MaxQ:

17

http://maxq.tigris.org/
http://forge.ow2.org/projects/clif/

CLIF user manual guide

1. You have to edit the maxq.properties file and to choose which timer will be used during the
injection (ConstantTimer and RamdomTimer are available). You can also specify on which
port starts MaxQ. By default, it starts on the port 8090.

2. You have to configure your web browser to go through a proxy for Http requests.

3. Then you have to click on "File" -> "New" -> "ISAC scenario". At this point, the proxy is
started but doesn't record ISAC scenario yet: it works as a transparent proxy.

4. Click on "Test" -> "Start Recording". Now, all requests going from the web browser to a
server will be stored in the ISAC scenario.

5. At the end of the web session, click on "Test" -> "Stop Recording". A pop-up appears to
select a name and a destination to save the file. Give a name with the extension ".xis". Then
save.

Now you have a scenario corresponding to a user behavior. You can import it in your Clif Console
to edit the load profile in order to replay it on a large scale.

5.2.6. Deploying and executing an ISAC scenario

Remember that a scenario is local to each load injector. When editing your test plan, the key idea is
to use the ISAC execution engine as a load injector, and to set the test plan file as argument:

- class name: IsacRunner
+ arguments: myScenario.xis

Your code server path should include the directory where your scenario file is, in order to benefit
from the automatic remote loading of the scenario file by every remote ISAC execution engine you
may have defined in your test plan.

A number of the execution engine's parameters may be modified, including at runtime:

- about the engine itself (size of the thread pool, polling period for load profile management,
tolerance on deadlines - see appendix page 53);
- about the active scenario, in particular the number of active instances (population) of each
behavior.
ISAC scenarios end on completion (load profiles time have elapsed), failure (abort), or manual stop.
As soon as at least one behavior population has been manually set, or when no load profile is
defined for any behavior, the scenario must be manually stopped.

5.3. Synchronization pseudo-injector

5.3.1. Rationale

A test plan may include several load injectors which require some global synchronization between
each other. When using ISAC scenarios, for example, virtual users belonging to different scenarios,
possibly distributed among different CLIF servers, may need to synchronize with each other. ISAC
provides a synchronization plug-in dedicated to this kind of feature.

18

August 30th 2016

5.3.2. Usage

In order to support global, distributed synchronization, a test plan must include (at least) one
synchronization pseudo-injector:

« class name: Synchro

« arguments: synchronization_domain_name duration_in_seconds [locki=ni1 ...]
The first argument is a synchronization domain name. This name may be freely chosen, but it must
be unique in your test plan. This name will be necessary for your scenarios (e.g. through the
synchronization ISAC plug-in) to connect to the synchronization server embedded in the pseudo-
1njector.

The second argument is the execution duration, in seconds. This allows for an autonomous
termination of the synchronization pseudo-injector, with the completed status. Note that, even when
completion is reached, the synchronization features are still operational. In other words, it works
still after the duration has elapsed.

Subsequent arguments are optional. They allow for declaring one or several predefined rendez-vous,
specifying the minimum number of notifications that must be received by the named lock before
releasing it. Refer to the synchronization tool documentation (e.g. the synchronization ISAC plug-
in's help) for details about this feature.

5.3.3. Alarms

The Synchro pseudo-injector generates an alarm on the first notification of each lock. This alarm
has the following fields:

- date: elapsed time since the test initialization (in milliseconds)
- severity level: 0 (INFO)
« message: first notification of lock lock_name

19

CLIF user manual guide

6. Eclipse-based graphical user interface

6.1. Introduction
CLIF comes with an Eclipse-based Graphical User Interface. This GUI has 4 functions:

« a CLIF console for test deployment, execution and monitoring, including a test plan editor;
« a graphical editor for ISAC scenarios;
- aprogramming environment for ISAC plug-ins;
- areporting environment'.
To install and run the Eclipse-based Graphical user interface, see the Install Manual.

6.2. Run CLIF registry

Connection to the CLIF registry 1s updated on each test plan deployment or edition, according to the
registry settings of the test plan's project (see the CLIF project settings in the Eclipse Preferences
window, or the project's c1if.props file). So you might run a standalone registry outside of the
console, anywhere and rerun it anytime between two consecutive deployments.

Moreover, the console automatically runs a registry whenever it can't connect to the specified
registry, using the specified registry port number. You can actually rely on this feature as a simple
way to have a registry running without caring of starting it. The consequence is just that you have to
run your CLIF servers after the console. This registry can't be stopped unless you quit the console,
but still you can switch to any other registry by changing the settings.

1 currently as a preliminary version to be further completed by the CLIF team.

20

6.3. Test plan edition

CLIF RCP Console

August 30th 2016

- a =

P A LY

T Mavigator 52 =0
2 B&g~

[= 1= MyTestPlan

(= report

(= stats

%] .project

|=| clif.props

by rew_test_plan.ckp

by ClifTreeview &2 =0
= i local host

@T jumn 2

L, memory 1

e cpu

File Edit CLIF Search Window Help

G

s riew_test_plan.ctp 53

Test Plan Editor

Injectors and probes

All injectors and probes in the kest plan

Cpu | memory | jvm

Id | Server Rale Class Can
2 localhost probe jvm Remove
< 2
Edit
b Monitor E2

= Properties

Manage injector and probe properties

Id* ; [z

Servert: [local host | [Refresh |
Raole*: |probe v
Class*: [jvm |
Arguments : | 500 100 |
Comment | |

=0

21

CLIF user manual guide

6.4. ISAC scenario edition

Please refer to the help section for the ISAC editor available from the Help menu. Refer also to
section for information about ISAC.

CLIF RCP Console
File Edit CLIF - Search Window Help

AT R

5 Navigator 52 I = O || sy new_test_plan.ctp =0
p—— . —
2 = || Behavior Page : Actions El=
Bl I MyTestPlan it for behavior descripti o
[report Edition page for behavior description Add a new action for behavior BO =
&> stats 25
@ Jproject .
o pros Behaviorid: | B0 sample : HttpInjector get
8% new_scenario.xis “J=Random 0
“ g new_test_plan.ctp = Hetplnjector_0 1
~ Load profile : @i]
R — &Buwhile o v
Edit profile | | Remove prafile =& nchoics
@D preemptive ample:
~ Behavior tree :
[http:fa0510431. agl.fr 8081 fnexusjindex. html |
- f Random_0.setUniform B
@ Random_D.sleep c redirection (optional)
G HttpInjector_0.get
eaders:
Add entry [Remave entry
wvalue
Eters (scheme | ‘name=value’){optional) :
Add field] [Remave field
dy may be stared in a variable (optional)
T 1 v
il 1 >
Design | Source | Import | Behavior BO [Fish ” Cancel
() Load profiles &2 I =8
Profiles : Time : 0 Yalue : 0
&0 100
&0
40
10 20 30 40 S0

22

August 30th 2016

6.5. test deployment and execution

Please refer to the help section available from the Help menu.

File Edit CLIF Search Window Help
s R

5. Navigator 52 = O | 1y rew _test_plan.ctp 52 | 52 new_scenario.xis =0

@ E % 7| Test commands

= =k MyTest
(= report Injectors and probes
(= stats Al injectors and probes in ths tast plan
A praject injector | em | memory | cpu
= clif.props
Ho L cemariosds d Server Role Class Arguments Com... | State
S new_s .
‘h’ et tost plam.cp 3 localhost injector IsacRunner new_scenario.xis running
Global state:
running
Tnitialize Start Collect
Edit | Test
lis Morikor £ =g
new_test_plan 57
injector | v | memary | epu | Alarms
Display = Collect | Elade = Time :\me:—\l'alue:'
= %] 1] 3 25"
b ClTreeview 52 =
& local host L
G injector 3
= aost043t
z
G,
@,(memory 1
L oD 1
action thraughput (ackions|s) v
[store monitaring data <

Drawing time frame (<) Faling period (=)

23

CLIF user manual guide

7. Java Swing-based graphical user interface

7.1. Introduction

CLIF comes with a Java/Swing-based Graphical User Interface. This GUI consists of a console for
test deployment, execution and monitoring, including a test plan editor. It also provides an analysis
tool to help produce test reports.

Compared to the Eclipse RCP-based console (see section 6), the Swing-based console has the
advantage of light-weight, simplicity and operating-system independence. On the negative side, its
simplicity springs from a reduced set of features. In particular, it does not provide an ISAC scenario
editor nor an ISAC plug-ins creation wizard. As far as the test results analysis is concerned, the
consoles provide different tools that suit different needs. The one provided by the Swing console is
probably more straightforward to use, and rapidly gives graphical views, while the one provided by
the Eclipse console is suited to the creation of long reports based on well-structured report
templates. Of course, once a test has been run, any analysis tool may be used regardlessly of the
user interface that has been used to run the test.

Note that the Swing console is actually embedded in the CLIF Eclipse-RCP distribution, since it
provides the so-called CLIF runtime environment directory, located in the console plug-in path, i.e.
something like plugins/org.ow2.clif.console.plugin_x.x.x/.

To install and run the Java Swing-based graphical user interface, see the Installation Manual.

7.2. Run CLIF registry

The GUI first tries to connect to a registry according to the registry configuration found in file
etc/clif.props. If it can't connect, it creates a registry.

24

August 30th 2016

File Testplan Tools 7

& probeTP.prop

Elade id| Server Role Elade class Blade argurment Cormment State |

3 g-smithp2.rd francetelecom.fr |probe systemn 1000140 sonde gysterne completed
g-smithp2.rd francetelecom.fr |probe cpu 1000140 sonde CPU completed

0 g-smithp2.rd francetelecom.fr |injector Autotest 10010050100 injecteur completed

1 g-smithp2.rd francetelecom.fr |probe memory 1000140 sonde memoire completed

rmemury rcpu rsystem riniectu-r |

Display | Collect | Blade |:924
] v D :
L O L
T O
et L o ___________
action throughput {actions)... - i 230

Drawing timeframe:|507 SEC. Paolling period: |1 SEC. SetDraw Reset

opped - ellapsad time 0:2:40

7.3. Test plan edition table

A test plan defines the probes and the injectors to be used, with their parameters, and where to
deploy them. Remember that injectors and probes are uniformly designated as "blades". The table in
the upper part is the test plan editor. Note that the bottom part (monitoring) is hidden as long as the
test is not initialized. Note also that the test plan is not editable when the monitoring area is shown.

Each row of the test plan table defines a blade configuration, through 6 columns:

Blade id is a unique identifier for the injector or probe to be deployed. A default id is

automatically set when adding a new blade, but it may be freely changed by the user as long as

it remains unique within current test plan;

Server offers a choice between available CLIF servers, where the blade is to be deployed. The

list of CLIF servers may be updated using option "Window > Refresh server list";

Role specifies whether the blade is a probe or an injector;

Blade class is where the user sets:

—either the Java class to be instantiated as a load injector (fully qualified name, without
trailing .class extension - see section 5),

—or a family name in case of a probe (see section 4);

Blade argument is an argument line that will be passed to the new blade instance at

deployment time;

Comment is an arbitrary user comment line.

25

CLIF user manual guide

The last column State is not editable. It shows state information about the blade (undeployed,
deploying, deployed, starting, running, stopping, suspending, resuming, completed, aborted...).

Test plans may be saved and restored using options in the File menu.

7.4. Performance and resource usage monitoring

As soon as the test plan is deployed and initialized, the monitoring area pops up in the test plan
window's bottom part. This area holds a set of tabbed panels:

- one for all injectors
« one for each probe family

For each panel, the user may set the monitoring time-frame, the polling period, and start or stop the
monitoring process. Moreover, a check-box table at the left side of each panel makes it possible to
selectively disable or enable the collect and display of monitoring data, for each blade.

7.5. File Menu

From this menu, the user can find options for saving and loading a test plan.

This menu also holds the "Quit" option to exit from CLIF console, which also terminates the
registry where CLIF servers are registered. As a result, whenever you terminate a CLIF console, any
remaining CLIF server will then become unreachable - you may stop these unreachable CLIF
servers manually. Running the CLIF console again will create a new, empty registry, and then you
may launch new CLIF servers. The user may not quit the console while a test is running (other wise,
the behavior is undefined).

7.6. Test plan menu
This menu holds test deployment and control commands. There are 2 subsets of options:

« the first set holds test plan definition and deployment commands

—option Refresh server list updates the list of available CLIF servers,

—option Edit switches to test plan edition mode, when enabled (i.e. when not already in
edition mode, and when no deployed test is currently running),

—option Deploy deploys the probes and injectors defined by current test plan

« the second set holds test control commands

—command initialize initializes all the blades so that they are actually ready to start;

—commands start, suspend, resume and stop respectively start, suspend, resume and stop the
execution of all blades;

—command collect tells the storage system to collect all test data from the blades (the actual
effect of this command fully depends on the Storage component). This option may be used
only after a test run. Collecting more than once after a test run has no effect; collecting is not
mandatory, which means that the user may not collect data if s/he is not interested in the test
results.

7.7. Tools menu

This menu displays on/off additional tools:

26

August 30th 2016

7.7.1. Basic analyzer

The Basic analyzer tool provides a very simple analysis tool sample. It must be used once at least
one test execution is complete, since it needs to get measures from one test execution.

7.7.2. Quick graphical analyzer

The Quick Gaphical Analyzer tool intends to provide a powerful and efficient tool to fulfill test
analysis and reporting needs. It is also embedded in the Eclipse-based console. This tool is currently
under development, but some basic features may be used already. Documentation will be detailed as
the tool development is progressing.

Report principle
A report is a set of pages. Each page holds:

- a number of data sets, built from CLIF's measures collected after a test execution, according to
a number of possible filters;
- for each dataset, an optional section of statistical values computed from one specific metric;
- for each statistics section, an optional drawing of the selected metric in a graph section;
- asingle graph section, where possible dataset drawings are superimposed.
Datasets

Datasets
There are three types of dataset (see File menu).

The basic type is the Simple Dataset. It represents a set of measures of a given type produced by a
given load injector or a probe, from a given test execution. For example: the alarm events from one
JVM probe of one test execution, or the action events from one load injector of one test execution.
A number of selection filters may be used to keep only the measures of interest. For example, keep
only requests of a given type or with a response time less than a given threshold. Filtering on dates
is also possible to restrict analysis to a sub-period of the test execution.

The Multiple Dataset offers an efficient way to select a given event type produced by several load
injectors or probes with the same filters. It is equivalent to creating as many simple datasets as
chosen injectors or probes, but in a single operation. Further optional statistical analysis and
drawing will be also defined once for all injectors and probes. Typical examples: create a multiple
dataset including every CPU probe of a given test execution, in order to get per-CPU analysis and
drawing superimposed on the same graph, or a given CPU probe in several test executions to
compare CPU usage.

The Aggregate Dataset enables to create a kind of simple dataset containing the full set of events of
a given type coming from several load injectors or probes measures. Typical usage: when using
several load injectors in a test, to get the global response time and throughput in the analysis and
drawings.

7.8. Help menu

This menu holds a single "About..." option, which displays CLIF version and compilation

information. This information is important to get and mention whenever you report a problem using
CLIF.

27

CLIF user manual guide

8. Command line user interface

8.1. Introduction

8.1.1. Rationale

Once you have created a test plan file (either using the Eclipse-based or the Java Swing-based GUI,
or editing a text file with the appropriate syntax), you may deploy and run tests through command
lines. Prior to any test plan deployment, one CLIF Registry (aka Fractal Registry) must be running.
It will be used by every command to register or lookup components of the deployed test plan,
especially the CLIF servers.

Some of these commands apply either to every probe and injector of a deployed test plan, or to a
subset of them. In the latter case, you must specify an extra argument to give the list of the target
injectors and probes identifiers (so-called blade identifier, as defined in the test plan):
-Dblades.id=id1:id2:...idn. Note that separately managing probes and injectors can become
tricky in big test plans... A typical usage of CLIF may not need this feature, and you would only
make use of the commands' default global scope.

Authorized commands depend on the state of the injectors and probes. Refer to the appendices of
the Developer Manual for details about the blade life-cycle.

The typical sequence of basic commands is the following: config - registry - server -
launch. In the case of a test plan using only the default CLIF server “local host”, only the 1aunch
command is necessary.

8.1.2. Choosing the right command line interface
There are two command line interfaces available:

- the shell script-based interface
« the ant-based interface

Both come with exactly the same features. As a major difference, the shell script-based interface
handles one CLIF configuration file per test project, while the ant-based interface relies on a single
configuration file per CLIF installation, which makes it harder to share a CLIF runtime environment
among several test projects and users. Moreover, automatic network configuration is not reliable
with the ant-based interface: in complex cases, you may edit the configuration file and enter the
right network addresses. As a result, the shell script-based command line interface is recommended
and the use of the ant-based interface is now discouraged.

8.2. Shell script-based command line interface

These full-fledged control scripts are available in the bin directory of the CLIF runtime
environment:

+ clifemd is a Bash script for Linux, MacOSX and Unix environments
+ clifcmd.bat is a batch script for Windows environments

Their usage is identical for both: clifcmd[.bat] command [arguments]. The list of available
commands is given in the following sub-sections (arguments between [] are optional).

28

August 30th 2016

8.2.1. Configure the CLIF environment
config [registry_host[:registry_port] [codeserver_host[:codeserver_port]]]

This command creates or updates c1if.opts configuration file, in current directory, in order to set
network-related properties:

« the IP address where the registry is to be made available (and possibly a custom port number,
to override the default port number), so that CLIF servers can register;

« the IP address where the code server is to be made available (and possibly a custom port
number, to override the default port number), so that necessary code and resources can be
downloaded when deploying a test plan;

- in a transparent manner, this command also tries to connect to the registry and to run a smart
selection process of network addresses to use for communication with CLIF servers. For
example, non-routed IP addresses or translated addresses (Network Address Translation) are
excluded. This selection is aborted if the registry is not running at the given (or default)
address.

When run with no argument, configuration will default to l1ocalhost IP address and default port
numbers for both the registry and the code server (respectively 1234 and 1357).

The first optional argument sets the IP address of the host where the CLIF registry is running or
going to be launched. Optionally, the registry's default port number (1234) may be overridden to a
custom port number.

The second optional argument sets the IP address of the host where the code server will be launched
for upcoming test plan deployments. Optionally, the code server's default port number (1357) may
be overridden to a custom port number. When this second argument is omitted, the IP address of the
code server defaults to the registry's IP address.

You shall run this command first before running the registry, so that you can set the IP address, and
possibly the custom port number, where the registry will be reachable. Then, you shall run the
registry and run this command for all CLIF servers before running them, to configure their network
properties and detect possible network issues.

Note. This command may take some time to complete: expect about 5 seconds per network

interface.

8.2.2. Run the CLIF registry
registry

Runs the CLIF registry (aka Fractal Registry) so that CLIF servers can register. The registry will
bind to the IP address and port number set during the configuration step. This command never
returns unless the Registry process is killed.

When the shared code server mode is enabled, this command also starts a code server, that will be
used for all further deployments.

Note. Only one Registry shall be launched on a given host (further attempts will just fail), unless
you install another CLIF runtime environment and configure it with a different registry port.

29

CLIF user manual guide

8.2.3. Run a CLIF server

server [name]

Runs a CLIF server and registers it in the CLIF registry, either using current host name as server
name, or using the provided argument as name. In either way, CLIF servers' names must match
servers' names in the test plans to be deployed. Names are case-sensitive. A CLIF server can not be
created without a reachable Registry.

This command never returns unless the CLIF server process is killed.
Notes:

- when a CLIF server is killed, its name remains registered until the registry is restarted, or
another CLIF server is started and registered with the same server name. Then, a test plan
deployment may fail not only because a CLIF server name is missing in the registry, but also
because the corresponding CLIF server is no longer alive.

- whenever the Registry is restarted, all registered CLIF servers must be restarted also in order
to be reachable again.

« the default CLIF server, named ‘“local host”, is created by the deployment command and
registered in the registry.

8.2.4. Print names of registered CLIF servers

listservers
Prints the names of CLIF servers currently registered in the registry.

Note. This command does not check for real availability of CLIF servers. A CLIF server may have
registered some time ago and then it may have become unreachable for some reason, while this
command will still list its name however.

8.2.5. Wait for registry and CLIF servers

waltservers [testplan.ctp]

Waits until the registry and, optionally, all CLIF servers used by a given test plan file are ready.
Note the default CLIF server named "local host" is not taken into account, since it is created by the
deploy command. This command is typically called before the deploy or launch command, to
avoid a deployment failure due to missing CLIF servers.

This command output lists CLIF servers' names as soon as they are registered. If a CLIF server is
missing in the output, and that the command does not exit, then either this CLIF server was not
successfully started, or it has erroneously registered in another registry. In both cases, check the
configuration of the missing CLIF server and (re)start it.

Note. This command only checks that some CLIF servers have registered with the required names.
It does not check for real availability of CLIF servers: a CLIF server may have registered some time
ago and then it may have become unreachable for some reason, while this command will still
consider it as ready.

8.2.6. Deploy a test plan

deploy testplan_name testplan_file

30

August 30th 2016

Deploys a new test plan (probes and injectors) as defined by the given test plan file. The first
argument sets a name to the deployed test plan. This name is then required by almost all other
commands to control this deployed test plan. The second argument gives the path to the test plan
definition file (usually ending with the .ctp extension, although this is not mandatory nor assumed
by CLIF).

When the test plan to deploy involves CLIF servers other than the default "local host" CLIF server,
then the registry and CLIF servers must be running prior to running this command. Otherwise, this
command will handle the registry creation if necessary. In any case, this command creates the "local
host" default CLIF server.

When successful, this command does not return, and should not be manually terminated as long as
you want to use the deployed test plan.

Note. This command includes the launch of the CLIF code server that will deliver all necessary
code and resources used by injectors and probes (such as workload scenario files or probe
configuration files). Thus, the code server network configuration, among all involved CLIF servers,
must be consistent with the network location of this code server.

8.2.7. Initialize a new test

init testplan_name testrun_id

Initializes all probes and injectors in a deployed test plan. The target deployed test plan is
designated by its name (as set at deployment time). An identifier for this new test must be provided.
This identifier will be further useful to the user to identify this test run, for instance when browsing
measurements for analysis and reporting purpose.

8.2.8. Start a test
start testplan_name [idl:id2:...idN]
Starts probes and injectors of the given deployed test plan, or just a subset of them when specified.

They must be initialized prior to this command.

8.2.9. Suspend a test
suspend testplan_name [idl:id2:...1idN]

Suspends all probes and injectors of the given deployed test plan, or just a subset of them when
specified. They must be running prior to this command.

8.2.10. Resume a test

resume testplan_name [idl:id2:...1idN]

Resumes all probes and injectors of the given deployed test plan, or just a subset of them when
specified. They must be suspended prior to this command.

8.2.11. Stop a test
stop testplan_name [idl:id2:...idN]

31

CLIF user manual guide

Definitively stops all probes and injectors of the given deployed test plan, or just a subset of them
when specified. Stopping is possible for both running and suspended probes/injectors, as well as
right after initialization.

Don't forget to use the collect command to gather all measurements to the host from where the
test plan has been deployed, unless you are not interested in these measurements for some reason.
Once a test is stopped, the same deployed test plan may be initialized again to run another test, and
SO on.

8.2.12. Wait for end of test

join testplan_name [idl:id2:...idN]

Waits until the probes and injectors of the given deployed test plan, or just a subset of them when
specified, terminate.

8.2.13. Collect measurements

collect testplan_name [idl:id2:...1idN]

Collects measurements generated by probes and injectors of the given deployed test plan, or just a
subset of them when specified. Collecting is optional, i.e. the user may not collect results s/he is not

interested in. This command waits for injectors and probes to be terminated prior to actually
perform the collect operation.

8.2.14. Full run of a deployed test
run testplan_name testrun_id [idl:id2:...1idN]
Automatic sequence of init, start and collect commands on all the probes and injectors of the

given deployed test plan, or just a subset of them when specified (init is applied to all injectors and
probes in any case).

8.2.15. Deployment and full test run

launch testplan_name testplan_file testrun_id

Automatic sequence of test plan deployment and then commands init, start and collect on all
probes and injectors of the given test plan. This command exits when the full sequence is complete.

As a major difference with the use of command deploy, which enables several consecutive runs on
the same deployed test plan, the test plan is deployed and executed only once.

When the test plan to deploy involves CLIF servers other than the default "local host" CLIF server,
then you shall run the registry and the necessary CLIF servers prior to invoking this command.
Otherwise, there is no necessity for first running a registry.

8.2.16. Print injector or probe parameters

params testplan_name id

Lists all parameters of a probe or injector, designated by its identifier, among a deployed test plan.
These parameters names and values are specific to the target probe or injector. Values may be
changed using command change (see 8.2.17).

32

August 30th 2016

8.2.17. Change an injector or probe parameter value
change testplan_name id param_name param_value

Changes a parameter's value for a given injector or probe in a given deployed test plan.

8.2.18. Print probe help

probehelp probe_type

Prints a help message about the arguments that a probe of type probeType must be given when it is
involved in a test plan. Existing probe types and their arguments are detailed in this documentation
(see section 4.2), but this command is helpful for argument values that are not always
straightforward to guess, like a network adapter name or a disk partition path.

8.2.19. Print response times statistics

quickstats [report_directory]

Prints a statistical synthesis for the latest test found in the default report directory, or in the provided
report directory path. This synthesis aggregates all load injectors and gives, for each type of request
as well as for all types of requests:

+ the number of successful requests and errors,

« response times minimum, maximum, mean, median, standard deviation,

+ the throughput.
Two system properties may be set in the CLIF configuration file to perform some cleaning of
measurements, i.e. discard extreme values. See properties clif.quickstats.limit and
clif.quickstats.factor in Appendix A p.43 for explanations.

8.2.20. Get CLIF version information
version
Prints version information about the operating system, the Java environment and CLIF. This

information is mostly useful when interacting with CLIF support, to accurately and quickly identify
the key elements of your CLIF environment.

8.2.21. Run graphical tools
gui
analyze

Run simple graphical user interfaces. These commands are available only in "swing" CLIF
distributions (not in plain "server" distributions).

« gui runs a simplified CLIF console giving access to test plan edition, deployment and
execution, as well as measurement analysis and test reporting;

+ analyze runs just a subpart of the console, consisting of the main analysis and reporting
graphical tool.

33

CLIF user manual guide

8.3. ant-based command-line interface

These commands are defined in the build.xml file available at CLIF runtime environment's root.
They make use of a configuration file located in etc/c1if.props in CLIF runtime environment. As
a major difference with the shell script-based command line interface, the ant-based interface relies
on a unique configuration file per CLIF runtime environment, instead of one per test project
directory, making it harder to share a CLIF environment for different test projects and users.

The ant-based command line interface is deprecated and the use of the shell script-based
command line described in previous subsection is recommended instead. Besides, the shell
script-based command-line interface does not require the ant utility.

8.3.1. Configure the CLIF environment: config

ant [-Dregistry.host=myRegHost] [-Dregistry.port=1234]
[-Dcodeserver.host=myCodeServerHost] [-Dcodeserver.port=1357]
[-Dcodeserver.path=myCodesererPath] config

This command is a helper to update CLIF's configuration file located in etc/clif.props. The
extension name of this configuration file is a bit misleading: although it actually defines Java
properties, it also defines, more generally, JVM options, and it does not follow the common Java
property file syntax. For this reason, it is recommended to use this helper command, which is
sufficient for a common usage of CLIF. However, setting extra properties or adding custom JVM
options will require to edit this file with a text editor. Refer to Appendix A page 43 to get the full
list of CLIF customization properties.

This command is either interactive or non-interactive: when option -Dregistry.host 1s set in the
command line, no user interaction is performed, while the user is prompted for a registry host value
otherwise. In both cases, all other options are automatically set to their default values, which should
be correct in common cases.

The CLIF configuration step must be performed on each CLIF runtime environment involved in a
test plan deployment, before any other command. This includes the target CLIF servers, as well as
the CLIF runtime from which you deploy test plans. When deploying with the Eclipse-based
console, configuration is achieved through the GUI (see the CLIF properties of the test project).

Options:

-Dregistry.host=...: set the IP address or network name of the node where the registry is
expected to be run. localhost is the initial value when no configuration is performed, but it only
works when test plans are not be deployed over a network, but on the same node as the registry
itself.

-Dregistry.port=...: set the TCP port number used by the CLIF registry. You may change the
default value 1234 when it is not free or permitted on your registry node.

-Dcodeserver.host=...: setthe IP address or network name of the node where the CLIF code
server is expected to be run. The code server is automatically launched when you deploy a test plan,
so that necessary resource files or even Java code can be transparently dispatched to all the CLIF
servers involved in a distributed test plan. In common situations, you may run the test plan
deployment on the same node as the registry. So, when this option is omitted, the config command
assumes that the code server's address is the same as the registry's address. Then, you must set this

34

August 30th 2016

option whenever you deploy a test plan from one node, while the registry is running on another
node.

-Dcodeserver.port=...: set the TCP port number used by the code server. You may change the
default value 1357 when it is not free or permitted on the node hosting the code server (the node
you run the test plan deployment from).

-Dcodeserver.path=...: set the directories from where the code server should look for when
CLIF servers ask for missing resource files or code when a test plan is being deployed. The default

value is the current working directory (represented by “.”). This option is useful only in the CLIF
runtime environment from which test plans are deployed; CLIF servers do not use this parameter.

Note. The resulting network configuration may not always be correct, especially in cases of
multiple network interfaces, which may result in getting CLIF server, deployment or measurement
collection problems (error or freeze). Then, you may have to edit the configuration file in order to
fix some network settings.

This is the reason why it is recommended to switch to the shell script-based command line interface,
for it generates correct network configurations thanks to a more advanced protocol (refer to 8.2).

8.3.2. Run CLIF Registry: registry

ant registry

Equivalent for command clifcmd registry. Refer to 8.2.2.

8.3.3. Run a CLIF server: server

ant [-Dserver.name=myClifServerl] server

Equivalent for command clifcmd server [myClifServerl].Refer to 8.3.3.

8.3.4. Print the list of available CLIF servers: listservers

ant listservers

Equivalent for command clifcmd listservers. Refer to 8.2.4.

8.3.5. Wait for reqgistry and CLIF servers: waitservers

ant -Dtestplan.file=myTestPlan.ctp waitservers

Equivalent for command clifcmd waitservers myTestPlan.ctp. Refer to 8.2.5.

8.3.6. Test plan deployment: deploy

ant -Dtestplan.name=name -Dtestplan.file=myTestPlan.ctp deploy

Equivalent for command clifcmd deploy name myTestPlan.ctp. Refer to 8.2.6.

8.3.7. Test initialization: init

ant -Dtestplan.name=name -Dtestrun.id=testId init

Equivalent for command clifcmd init name testId. Referto 8.2.7.

8.3.8. Test execution start: start

ant -Dtestplan.name=name [-Dblades.id=idl:id2:...idn] start

35

CLIF user manual guide

Equivalent for command clifcmd start name id1:id2:...idn. Referto 8.2.8.

8.3.9. Suspend test execution: suspend

ant -Dtestplan.name=name [-Dblades.id=idl:id2:...idn] suspend

Equivalent for command clifcmd suspend name idl1:id2:...idn. Referto 8.2.9.

8.3.10. Resume test execution: resume

ant -Dtestplan.name=name [-Dblades.id=idl:id2:...idn] resume

Equivalent for command clifcmd resume name idl:id2:...idn. Refer to 8.2.10.

8.3.11. Stop test execution: stop

ant -Dtestplan.name=name [-Dblades.id=idl:id2:...idn] stop

Equivalent for command clifcmd stop name idl:id2:...idn. Referto 8.2.11.

8.3.12. Wait for a test execution to terminate: join

ant -Dtestplan.name=name [-Dblades.id=idl:id2:...idn] join

Equivalent for command clifcmd join name idl:id2:...idn. Refer to 8.2.12.

8.3.13. Collect test results (measurements): collect

ant -Dtestplan.name=name [-Dblades.id=idl:1id2:...idn] collect

Equivalent for command clifcmd collect name idl:id2:...idn.Referto 8.2.13.

8.3.14. Shortcut for full test execution process: run

ant -Dtestplan.name=name -Dtestrun.id=testId [-Dblades.id=idl:...idn] run

Equivalent for command clifcmd run name testId idl:...idn. Refer to 8.2.14.

8.3.15. Shortcut for full deployment and execution process: launch

ant -Dtestplan.name=name -Dtestrun.id=testId —-Dtestplan.file=myTestPlan.ctp
launch

Equivalent for command clifcmd launch name myTestPlan.ctp testId. Referto 8.2.15.

8.3.16. Get specific runtime parameters of a probe or injector: params

ant -Dtestplan.name=name -Dblade.id=id params

Equivalent for command clifcmd params name id. Refer to 8.2.16.

8.3.17. Change a runtime parameter of a probe or injector: change

ant -Dtestplan.name=name -Dblade.id=id -Dparam.name=param -Dparam.value=value
change

Equivalent for command clifcmd change name id param value. Refer to 8.2.17.

8.3.18. Get help about a probe's arguments: probehelp
ant -Dprobe.type=probeType probehelp

36

August 30th 2016

Equivalent for command c1ifcmd probehelp probeType. Refer to 8.2.18.

8.3.19. Generate and print a quick statistical report: quickstats

ant [-Dreport.dir=reportdirectory] [-Dclif.quickstat.cleanfactor=f
-Dclif.quickstat.cleanlimit=p] quickstats

Equivalent for command clifcmd quickstats reportdirectory, except that optional
parameters £ (cleaning factor) and p (cleaning limit) may be given via the command line instead of
just through the CLIF configuration file. Refer to 8.2.19.

8.3.20. Get CLIF version information

ant version

Equivalent for command clifcmd version. Refer to 8.2.20.

8.3.21. Run graphical tools
ant gui

ant analyze

Equivalent for commands clifcmd gui and clifcmd analyze. Refer to.

37

CLIF user manual guide

9. Using CLIF with Jenkins

9.1. What to do with it?

Jenkins CI is a popular continuous integration framework (http:/jenkins-ci.org), dedicated to
automating tests and reporting. CLIF provides a plug-in for Jenkins, available from the CLIF
project's download area:

http://forge.ow2.org/project/download.php?eroup id=57&file 1d=20200

Thanks to Jenkins and the CLIF plug-in, you can:

+ define performance test jobs directly from your CLIF test projects;
- use Jenkins as a web interface to deploy and run CLIF tests;
- get automatic performance reports, with both per-test detailed statistical analysis (including
graphs) and performance trends graphs through consecutive tests;
- automate performance test runs, either in a continuous integration perspective, or to monitor
performance and quality of experience of some running applications or services.
Please refer to the installation manual for setting your CLIF-enabled Jenkins environment.

Jenkins random-randoma2 #1 Clif Report ENABLE AUTO REFRESH
& Back to Project -
Build Performance Report
O_ Status
= Changes random2.ctp - Mon Feb 04 13:06:39 CET 2013 NS
g Console Output Server - clifi
”im; Edit Build Information Injector - 1 - IsacRunner (| Argument=randem2.xis Comment=)
@ Delete Build Label Samples Avg Median Min Max Std Throughput % Errors
= requete [o ‘ B.BT3| B4| Bﬂ‘ 30‘ 140‘29.61‘ 148.2 0%
lig it Report equete Lo 7 o ol '
-.;; Previous Build Server - clif2
Injector - 0 - IsacRunner { Argument=random.xis Commeni=)
Label Samples Awvg Median Min Max Std Throughput % Errors
requete [+ ¢ i ol | 5:572| 1BB| 1eu| 32| 33-1| 60.25| 145.42| 0%
Aggregated values
Label Samples Avg Median Mim Max Std Throughput S Errors
requete [+ 3 Jin ol ‘ 1?:?45| 126| 116‘ 30‘ 334‘ 63.3?‘ 296.55| 0%
E Help us localize this page age generated: Feb 26, 2013 5:03:30 PM Jenkins ver. 1.473

CLIF plug-in for Jenkins: Test-by-test detailed statistical analysis

38

http://forge.ow2.org/project/download.php?group_id=57&file_id=20200
http://jenkins-ci.org/

August 30th 2016

™ Clif Project Report [Jenkins] - Mozilla Firefox

SIEPE Ci Clif Project Report [Jenkins] B

Jellkills @, search (3 Ibdi6dst | log out

Jenkins AuthGroup-test1-1inj Clif performance Trend ENABLE AUTO REFRESH

g- Back to Dashboard

Clif Performance Trend Report

Q) status
pmn— Last Report
.= Changes
[worksoace test1-1inj.ctp

@ Buid Now CONNECT-Successful bind with server. Percentage of errors
| g

® Delete Project
’ COI‘If'QLII'E

1"y Clif performance Trend

-, Build History (trend)
& #27 Oct25 2013 6:02:28 PM

& #26 Oct25 2013 5:56:22 PM

@ #25 Oct25. 2013 5:00:38 PM ﬁ § ﬁ §
Build Build

@ #24 Oct25 2013 4:00:38 PM

& #23 Oct25. 2013 3:00:38 PM

) BSS for an) ASS for faiures Percentage of errors

Time (ms)

Build Build
E Help us localize this page Page generated: Oct 25, 2013 6:09:17 PM Jenking ver. 1.509.3

CLIF plug-in for Jenkins: Performance trends through consecutive tests

9.2. How to create a CLIF test job

9.2.1. Rationale

Given a CLIF test project, consisting of a test plan, one or several scenarios and possible resource
files (holding some data sets), we want to define a CLIF job in Jenkins that will gather those files in
a Jenkins workspace and run the test.

There are two ways of achieving this result:
+ going through a source code management system like CVS, SVN or GIT;
- going through a wizard that will take a CLIF project archive file (.zip).
9.2.2. Create a CLIF test job via SVN or GIT

As a continuous integration server, Jenkins is able to get all resources to run a build (or test) from a
source code management system, like CVS, SVN or GIT.

First, the CLIF project must be first committed to a source code management system. If you are
using the Eclipse-based console, we recommend to install and use an Eclipse plug-in for SVN or
GIT.

39

CLIF user manual guide

Then, create the CLIF job in Jenkins : New Item > Freestyle project, choose a job/Item name, and
click on button ox.

Then, in the job configuration page that follows, set the following:

« In the Source Code Management section, select your protocol and enter the repository
information

« In the Build section, click on the Add build step and select either Invoke Clif or Execute shell
or Execute Windows batch command. 1f you choose the Invoke Clif option, you will be using
transparently the ant-based command-line interface, which is now discouraged. Otherwise, you
will be using the new shell script-based command-line interface, which is recommended. The
main interest is that it allows each CLIF job for having its own CLIF parameters (via file
clif.opts in the CLIF test project), instead of sharing common parameters among all CLIF
jobs using a given CLIF runtime (via file etc/clif.props in CLIF runtime).

—if using the Invoke Clif option, you have to select the right CLIF runtime among those
installed, and enter the test plan file name, relative to the Jenkins workspace directory, i.e.
the root of the CLIF test project that will be fetched from the source code management
system,;

—when using the shell script option, you just have to run the clifcmd launch... command
for the right test plan, possibly followed by the c1ifcmd quickstats command if you are
interesting in the quickstats report. Beware of adding the bin directory of a CLIF runtime to
the path environment variable, or set the full path to the c1ifcmd command. Refer to
sections 8.2.15 and 8.2.19 for details.

+ In the Post-build Actions section, click on button Add post-build action and choose action
Publish Clif performance report. A number of advanced options make it possible to customize
CLIF reports.

« Click on button Save or Apply.

9.2.3. Import a CLIF test via the "wizard"

Once the CLIF plug-in for Jenkins is installed, the main menu features a new option: Import a Clif
zip. Thanks to this wizard, you can directly create new CLIF test jobs from a CLIF test project
archive file. The easiest way to build this archive file is to export the CLIF project from the Eclipse-
based console. Otherwise, suffice to make a zip file holding the CLIF project directory, i.e. a
directory containing all CLIF files: test plan(s), scenario(s), resource file(s), c1if.opts, etc.

« Click on Import a Clif zip, choose the CLIF project archive file to import, and click on button
Import'.

« The wizard creates one job per test plan. Make your selection of test plans to import, choose
the Clif runtime to use for these test plans, and click on button Validate.

Jobs are automatically created, including the build and post-build actions (respectively running the
test and generating the CLIF report).

Note. The created jobs use the ant-based interface. However, it is still possible to edit the job and
switch it to use the shell script-based interface (refer to section 9.2.2 above).

1 Careful with Jenkins' automatic refresh: when activated, the chosen file name may be discarded on refresh, and
clicking on the Import button may raise an error. Should this occur, just try again or disable automatic refresh.

40

August 30th 2016

10. Test results and measurements
Whatever the user interface, CLIF tests gather the following data:

- test plan copy,

- Java system properties at test execution time for all probes and injectors,
+ measurements from all probes and load injectors,

- life-cycle events for all probes and injectors,

- alarms generated by injectors or probes (if any).

All these data are gathered in a hierarchy of CSV'-files in a subdirectory of CLIF's runtime
environment named "report" by default. This target directory may be changed with a system
property (see Appendix A page 43).

Moreover, a so-called quickstats report may be automatically generated after each test execution.
It gives a table of statistical results about response times, as well as throughput and number of errors
for each type of issued request, globally for all load injectors. The quickstats feature is available:

- from the Eclipse console, by clicking on the collect button once a test is complete - the report
is written to a file in a dedicated directory (stats by default) of the test's project;
+ from the command line tools, using the quickstats command - the report is printed to the
terminal's standard output (see section 8.2.19 or 8.3.19).
Both the Eclipse RCP-based console (section 6) and the Java Swing-based console (section 7)
provide a graphical and statistical analysis tool. Moreover, the Eclipse-based console makes it
possible to store monitoring moving statistics to files stored in the stats (by default) directory in
the project's directory.

The CLIF plug-in for Jenkins automatically generates performance reports, test by test, and trends
through tests (see section 9).

To sum-up:
user interface > command Swing Eclipse Jenkins
available data line tools console console
raw measurements yes yes yes yes
quickstats reports yes no yes yes
moving statistics no no yes no
custom reports no yes yes no
automatic reports no no no yes

1 Comma-Separated Values, a common text-based export format for spreadsheet programs. Each line of the CSV file
contains an event (measure entry), and values hold by each event are separated by a comma.

41

CLIF user manual guide

11. Licenses
CLIF is open source software licensed under the GNU Lesser General Public License (LGPL).

CLIF comes with facilities including the following open source software libraries:

- Jakarta commons Hittpclient, from the Apache Software Foundation, released under Apache
License;

+ OpenLDAP from the OpenLDAP Foundation, released under Openl.DAP Public License

« Htmlparser from Source Forge, released under LGPL license;

- Eclipse graphical user interface libraries and Rich Client Platform, released under Common
Public License;

« PostgreSQL JDBC driver, released under BSD license;

« DnsJava for DNS injection support, released under BSD License;

« JDOM for XML parsing in ISAC, released with a specific license.

- JavaMail for IMAP load injection, released under Berkeley license.

42

http://developers.sun.com/license/berkeley_license.html
http://java.sun.com/products/javamail/
http://clif.objectweb.org/JDOM_LICENSE.txt
http://www.jdom.org/
http://www.xbill.org/dnsjava/
http://jdbc.postgresql.org/license.html
http://jdbc.postgresql.org/
http://www.eclipse.org/legal/cpl-v10.html
http://www.eclipse.org/legal/cpl-v10.html
http://www.eclipse.org/
http://www.gnu.org/copyleft/lesser.html
http://sourceforge.net/projects/htmlparser/
http://www.openldap.org/license.html
http://www.openldap.org/
http://jakarta.apache.org/commons/license.html
http://jakarta.apache.org/commons/license.html
http://jakarta.apache.org/commons/httpclient/
http://www.gnu.org/copyleft/lesser.html

August 30th 2016

Appendix A: system properties

A number of Java system properties are set in file etc/clif.props of CLIF runtime environment. This
file is used by the helper ant targets provided in file build.xml located at the root of CLIF runtime
environment. Should you need to use CLIF without ant, don't forget to set all these system
properties when launching the appropriate class in your Java Virtual Machine.

System properties used by CLIF are listed in the table hereafter:

system property comment default value in = default
file etc/clif.props = value in
and clif.opts binary
code
java.security.policy set Java security policy file etc/java.policy none
fractal.provider set Fractal implementation org.objectweb.frac none
tal.julia.Julia

fractal.registry.host set hostname running FractalRMI localhost
registry. Most often, the registry in run
by the the console (so the host is the
console's host)

fractal.registry.port set port number for the FractalRMI 1234
registry launched by the console.

julia.config using Julia as Fractal implementation, etc/julia.cfg none
set Julia configuration file

julia.loader using Julia as Fractal implementation, org.objectweb. none
set class loader fractal.julia.loader

.DynamicLoader
clif.codeserver.port set port number for class and resource 1357 none

server embedded in the console

clif.codeserver.host set host name for class and resource localhost
server embedded in the console

clif.codeserver.path ordered set of directories where the examples/classes/ none
codeserver may look for classes and (just to make
resources it is asked for, separated by ; examples run)
character.

Note that, whatever the value of this
property, classes and resources are
first looked for in the jar files in
lib/ext/ directory, and in the console's
current directory. Absolute paths are
used as is, while relative paths are
interpreted from the root of CLIF's
runtime environment.

43

CLIF user manual guide

system property

comment

default value in
file etc/clif.props
and clif.opts

default

value in

binary
code

clif.codeserver.shared

When set to yes, true, on or 1 (case-
insensitive), a single code server
instance will be used for all further
deployments, instead of one instance
for each deployment. The shared code
server is automatically launched when
running the registry command.

none

false

clif.deploy.besteffort

When set to yes, true, on or 1 (case-
insensitive), the deployment process
discards from the test plan all blades
that cannot be successfully deployed,
for any reason (missing or mute CLIF
server, blade failing to be deployed).
Then, the resulting sub-test plan is
regarded as successfully deployed as
long as at least one injector or probe
could be successfully deployed.

none

false

clif.deploy.retries

Number of retry attempts to reach a

CLIF server for deploying new blades.

This feature applies to CLIF servers
that would be registered in the CLIF
registry, but that would not be ready
yet.

none

clif.deploy.retrydelay

Sleeping delay, in milliseconds,
between two consecutive blade
deployment attempts on a registered
but unreachable CLIF server.

none

2000

44

August 30th 2016

system property comment default value in = default
file etc/clif.props = value in
and clif.opts binary
code
clif.deploy.timeout Maximum acceptable time, in none 0

milliseconds, waiting for a set of
blades to be deployed on each CLIF
server. When the time-out is reached
for one CLIF server, all of its blades,
as defined in the test plan, are
discarded. This resuts in a test plan
deployment failure, or not, according
the "best effort" setting.

Note: this duration shall be consistent
with, and actually greater than, the
number of deployment attempts
multiplied by the delay between two
consecutive attempts (see the "retries"
settings).

0 means no time-out (i.e. deployment
time is unlimited).

clif filestorage.clean Sets the cleaning policy with regard to "none" "none"
the conservation of test measurements.
The "none"policy keeps all
measurements of all tests. The "auto"
policy discards all output from
previous tests as soon as a new test is
initialized.

clif filestorage.delay_s Sets the delay (in seconds) before the = 60 60
file-based storage system actually
writes events after they are created.
Typical value should be greater than
the variation of response times to get
events written in chronological order.
However, this delay setting may be
subsumed by the setting of maximum
number of pending events (see
property clif filestorage.maxpending)

45

CLIF user manual guide

system property comment default value in = default
file etc/clif.props = value in
and clif.opts binary
code
clif filestorage.maxpending Sets the maximum number of pending 1000 1000
events, waiting to be written to file
because they are younger than the
write delay (see property
clif.filestorage.delay_s). Whenever
this threshold is overwhelmed, oldest
pending events are written without
waiting for the write delay. This may
lead to chronologically unordered
events in the file, but prevents from
saturating the JVM's heap memory
because of event buffering (especially
for high event throughputs).
clif filestorage.dir Sets the file system directory to be none report
created (if necessary) and used to store
the generated measures. An absolute
path is used as is, while a relative path
is interpreted from the root of CLIF's
runtime environment.
clif filestorage.host sets a local IP address or a subnet commented out, random
number to be elected by the filestorage but set by "ant choice
component when collecting events config" among
through TCP/IP sockets locally
available

46

August 30th 2016

system property comment default value in = default
file etc/clif.props = value in
and clif.opts binary
code
clif.globaltime Enables/disables global time reference false false

on initialization.

When enabled (property set to "yes",
"true", "on" or "1", case-insensitive),
events' dates are relative to the central
time transmitted on initialization. In
order to get an accurate date
synchronization, a network time
management protocol such as NTP
should be active on all the CLIF
servers' hosts. This property needs to
be set only by the tool which performs
the initialization call (i.e. not by the
CLIF servers themselves).

When disabled (property not set or set
to any other value), events' dates are
relative to local initialization time,
which may differ from one blade to
another, since initialization is
triggered in a round-robin among all
blades.

clif.isac.threads Size of ISAC execution engine's pool | 100 100
of thread. The optimal value depends
on the average requests throughput
and the average response time.

clif.isac.groupperiod update period (in ms) of active virtual | 100 100
users populations to match the
specified load profiles

clif.isac.schedulerperiod | polling period (in ms) for the threads | 100 100
of the thread pool asking for
something to do

clif.isac.jobdelay When positive, gives the delay -1 -1
threshold (in ms) before an alarm is

generated when a think time is longer
than specified. -1 disables this feature.

47

CLIF user manual guide

system property comment default value in = default
file etc/clif.props = value in
and clif.opts binary
code
clif.quickstat.cleanfactor | floating point value. When strictly 0

greater than zero, enables measures
cleaning when generating the
"quickstats" statistical report: response
times greater than (mean + f*standard
deviation) or less than (mean -
f*standard deviation) are discarded.
When less than or equal to zero, all
measures are kept.

clif.quickstat.cleanlimit floating point value between 0 and 95.4
100. When measures cleaning is
enabled for the "quickstats" report,
this setting gives the minimum
percentage of measures to keep.

jonathan.connectionfactory | sets a local IP address or a subnet commented out, random
.host number to be used by the FractalRMI | but set by "ant choice
remote object references config" among
locally
available

Other system properties may be useful for a variety of use cases (they are given in comments in file
etc/clif.props.template)

- for remote Java debugging:
—agentlib: jdwp=transport=dt_socket, address=8000, server=y, suspend=n

« for SSL certificates (for example for HTTPS support):
-Djavax.net.ssl.trustStore=/path/to/keystore
-Djavax.net.ssl.trustStorePassword=the_keystore_password

48

August 30th 2016

Appendix B: Class and resource files (remote) loading
Principle

When components are deployed in a CLIF server (probe, injector), the corresponding classes are
automatically downloaded from the console if they are locally missing. Moreover, those
components may require resource files (see webtest.urls file in webtest example, or
helloworld.xis file in isac-helloworld example), which the user would rather not have to copy
on every CLIF server. The content of these resource files can be remotely read via the console too.

This feature relies on a specific Java class loader and its associated system property
clif.codeserver.path on the one hand, and on a so-called "code server" embedded in the console
on the other hand.

Where classes and resource files are looked for?

The code server embedded in the console looks for the requested classes and resources successively
in the following places:

« jar files in CLIF distribution's lib/ext/ directory where the console is running. Note: since the
code server indexes the contents of all jar files in lib/ext/ at console start-up, all necessary jar
files must be present before running the console;

« the console's current directory (which should be CLIF's root directory);

- the directories declared by c1if.codeserver.path property, relative to the console's current
directory.

See appendix on system properties page on User Manual for details on how to set the
clif.codeserver.path property, and how to set the port number for the code server.

49

CLIF user manual guide

Appendix C: ISAC scenario DTD

<!-- A scenario is composed of two parts :-->

<!-- - behaviors, to define some behavior...-->

<!-- - load, to define the load repartition...-->

<!ELEMENT scenario (behaviors,loadprofile)>

<!-- In the part behaviors, we must define the plugins that will be used in

behaviors-->
<!ELEMENT behaviors (plugins,behavior+)>

<!-- For each plugin we define the plugin with the use tag-->
<!ELEMENT plugins (use*)>
<!-- We can add some parameters if it's needed-->
<!ELEMENT use (params?)>
<!-- We define an id which can be used in the next parts, to reference the
plugin used-->
<!-- The name is the name of the plugin that will be used-->
<!ATTLIST use
id ID #REQUIRED
name CDATA #REQUIRED
>
<!-- Now we can define the behaviors-->
<!-- a behavior begin with the behavior tag, and can be composed of: -->
<!-- - A sample : reference to a specified sample plugin... -->
<!-- - A timer : it's a reference to a timer plugin... -->
<!-- - A while controller : it's a while loop... -->
<!-- - A preemptive : it's a controller adding a preemptive for all it
children... -->
<!-- - An if controller : it's a controller doing the if / then /else task...
-->
<!-- - A nchoice controller : it's a controller which permits doing random

choices between some sub-behaviors with a weight factor -->
<!ELEMENT behavior (sample]|timer]|control|while|preemptive]|if|nchoice)*>

<!-- When we define a behavior we must define the id parameter too, -->
<!-- it will be used to reference behavior in load part-->
<!ATTLIST behavior
id ID #REQUIRED
>
<!-- A sample element could need some parameters-->
<!-- the parameters needed are defined in the plugin, which will be used,

definition file-->
<!ELEMENT sample (params?)>

<!-- A sample element have for parameter : -->

<!-- - use : the id of the plugin that will be used for this sample-->

<!-- the id of this plugin must be defined into the plugins part-->
<!-- - pame : the name of the action that is referenced by the sample tag-->
<!-- this action name must be specified in the plugin, which is used,

definition file-->
<!ATTLIST sample

use CDATA #REQUIRED
name CDATA #REQUIRED
>
<!-- A timer element could need some parameters-->
<!-- the parameters needed are defined in the plugin, which will be used,

definition file-->

<!ELEMENT timer (params?)>

<!-- The timer have got the same parameters of a sample element-->
<!ATTLIST timer

50

August 30th 2016

use CDATA #REQUIRED
name CDATA #REQUIRED
>
<!ELEMENT control (params?)>
<!ATTLIST control

use CDATA #REQUIRED
name CDATA #REQUIRED
>
<!-- A while controller must contain a condition and a sub-behavior-->
<!ELEMENT while (condition, (sample]|timer]|control|while]|preemptive|if|nchoice)*)>
<!-- A condition is a reference to a test of a specified plugin-->
<!-- it could need some parameters-->
<!ELEMENT condition (params?)>
<!-- we need specified as parameters for this tag, the plugin used and the name

of the test, like sample or timer tag-->
<!ATTLIST condition

use CDATA #REQUIRED

name CDATA #REQUIRED
>
<!-- A preemptive element is defined as a while element, the difference is in
the execution process-->
<!-- For a while we evaluate the condition before each loop, in a preemptive
before each action...-->
<!ELEMENT preemptive (condition, (sample|timer|control|while|preemptive|if|
nchoice)*)>

<!-- An if controller must contains a condition and a sub-behavior ('then'
tag)-->
<!-- And optionally it could contain another sub-behavior ('else' tag)-->

<!ELEMENT if (condition,then,else?)>

<!-- A then tag delimited the sub-behavior that will be executed if the
condition is true-->

<!ELEMENT then (sample]|timer]|control|while|preemptive|if|nchoice)*>

<!-- A else element contains a sub-behavior too-->
<!ELEMENT else (sample|timer]|control|while]|preemptive|if|nchoice)*>
<!-- A nchoice plugin contains n sub-behavior, each sub-behavior have a

probability to be executed-->
<!ELEMENT nchoice (choice+)>

<!-- An choice element contain a sub-behavior-->
<!ELEMENT choice (sample]|timer]|control|while|preemptive]|if|nchoice)*>
<!-- And this element take for parameter a probability-->

<!ATTLIST choice
proba CDATA #REQUIRED
>
<!-- Now we define the params element, this element begin the part to define
parameters for the parent element-->
<!ELEMENT params (param+)>

<!-- For each param we need to define it with the param tag-->
<!ELEMENT param EMPTY>
<!-- This tag take for parameters the name of the parameter and it value-->
<!ATTLIST param
name CDATA #REQUIRED
value CDATA #REQUIRED
>
<!-- Now let's define the load part, this part is used to define the ramps, each
ramps represent the load for a behavior-->
<!-- We can define some ramps together in a group element, this element is used

to launch several behaviors in the same time-->

51

CLIF user manual guide

<!ELEMENT loadprofile (group*)>

<!-- A group is a composition of 'ramp' elements-->
<!ELEMENT group (ramp+)>
<!-- We need define the behavior id of the group and optionally -->
<!-- the force stop mode, default is true -->
<!ATTLIST group
behavior CDATA #REQUIRED
forceStop (true|false) "true"
>
<!-- each ramp could take some parameters-->
<!ELEMENT ramp (points)>
<!-- For a ramp we must define the style of the ramp, which will be used-->
<!ATTLIST ramp
style CDATA #REQUIRED
>

<!ELEMENT points (point,point)>
<!ELEMENT point EMPTY>
<!-- For a ramp we must define the style of the ramp and the reference of the
behavior, which will be used-->
<!ATTLIST point
X CDATA #REQUIRED
y CDATA #REQUIRED
>

52

August 30th 2016

Appendix D: ISAC execution engine

The ISAC execution engine is the interpreter class for ISAC scenarios. When editing a test plan,
Just select the “injector” role and type IsacRunner in the “class” field. Then, fill the “arguments”
field with the file name of the ISAC scenario you want to run. As a general advice, don't set the full
path name but simply the file name, and add the directory where the scenario file resides to the code
server path (see appendix p. 49). When using the Eclipse console, the file typically resides in the
project directory.

The ISAC thread pool

The ISAC execution engine uses a pool of threads to run virtual users (aka behavior instances).
When a virtual user is engaged in a think time, its execution thread is used to activate another
virtual user. This way, the size of the thread pool is typically far smaller than the maximum of
simultaneously running virtual users that is specified by the load profile. This pool has a default size
that may be changed:

+ before runtime:

—either by setting system property clif.isac.threads

—or by adding option threads=my_custom_pool_size in the “arguments” field;
« at runtime, by changing the value of parameter “threads”.

Millions of virtual users per execution engine can easily be reached. The issue is that the think times
must be much greater than the response times in order to really support such a number of virtual
users without violating the specified behaviors. The theoretical optimal thread pool size is:

maximum number of virtual users xaverage response time

optimal pool size=
(average think time +average response time)
The actual optimal pool size shall be a little greater to face possible transient variations of the global
activity (when many virtual users simultaneously exit from a think time) and the overhead of
context switching between virtual users. The default size (see appendix p. 43) may require to be
adjusted to your particular test case. Of course, setting an over-sized pool of threads will waste
computing resources and result in performance degradation.

Deadline violation alarms (Job delay)

When the execution engine becomes overloaded, a consequence is that virtual users' think times
become longer than specified. In other words, the deadline for performing the action next to the
think time is violated. It is possible to get an alarm event when a given tolerance threshold is
reached. This feature is enabled as soon as a positive value is set for this threshold, expressed in
milliseconds. To set the threshold:

+ before runtime:

—either set system property clif.isac. jobdelay

—or add option jobdelay=my_custom_threshold_in_ms to the “arguments” field;
+ at runtime, by changing the value of parameter “jobdelay”.

Note that enabling this alarm results in a slight overhead in the execution engine functioning.
Moreover, setting a small threshold value may result in a profusion of meaningless alarms: a small
deadline violation from time to time does not necessarily mean the engine is overloaded. The

53

CLIF user manual guide

relevant threshold value depends a lot on your use case, but a 100ms to 1000ms delay is probably a
good order of magnitude. However, when analyzing the meaning of such an alarm, be careful also
about the Java garbage collector that blocks the JVM and may cause deadline violations.

The default value is -1 (disabled).
Group period

The execution engine periodically checks if the current number of virtual users matches the
specified load profile: in case some virtual users are missing, new ones are instantiated; in case
virtual users are too numerous, some of them are stopped once their current action is complete.
Stopping virtual users before the normal completion of their behaviors is performed only if the
“force stop” option has been enabled in the load profile definition. Otherwise, the execution engine
will just wait for the population to naturally decrease as behaviors complete.

The population checking period is set in milliseconds:

+ before runtime:

—by setting system property clif.isac.groupperiod

—or by adding option groupperiod=my_custom_group_period_ms to the “arguments” field;
« at runtime, by changing the value of parameter “groupperiod”.

The good period value is a trade-off between performance and accuracy of the engine: a short period
will increase the engine overhead but the virtual users' population will be closer to the load profile
specification. The default period (see appendix p. 43) is probably a good order of magnitude for
common test cases.

Scheduler period

When a thread from the pool has just completed an action for a virtual user which is entering a think
time period, it asks the engine for an action to do for another virtual user. If there is nothing to do at
this time, the thread makes a small sleep before asking again, and so on until it gets something to
do. The small sleep duration is given in milliseconds by the scheduler period parameter. This
parameter may be changed:

« before runtime:
—by setting system property clif.isac.schedulerperiod
—or by adding option groupperiod=my_custom_scheduler_period_ms to the “arguments”
field;
- at runtime, by changing the value of parameter “schedulerperiod”.
The good period value is a trade-off between engine reactiveness and performance. A zero value
should be avoided since the threads waiting for something to do would enter a frenetic polling loop
on interrogating the engine, which typically wastes all processing power. A big value should be
avoided too for the sake of think times accuracy. The formula below gives the possible variation
range of think times:

specified think time<actual think time <specified think time + scheduler period + context switching overhead

The default value (see appendix p. 43) seems to be a good value for common test cases. In the
general case, you should ensure that: (1) the scheduler period is significantly less than the think

54

August 30th 2016

times, and (2) the scheduler period is significantly less than the job delay setting (when
positive/enabled).

Storage options
As a CLIF load injector, the ISAC execution engine produces a number of events:

- one life-cycle event is produced each time the engine state changes: initializing, initialized,
starting, running, suspended, etc. (refer to the CLIF Programmer's Guide for details about the
blade life-cycle specification);

« one action event is produced for each request (aka sample) on the SUT;

- one alarm event may be generated each time a think time is actually longer than specified,
according to the given tolerance threshold (see Job delay parameter described above).

These events are stored unless you specify not to do so, through the following parameters:

* store-lifecycle-events
e store-action-events
e store-alarm-events

Acceptable enabling values are: on yes true
Acceptable disabling values are: off no false

Disabling storage for an event type has the following advantages: increased ISAC engine power,
reduced time for final data collection, reduced storage space. As a matter of fact, some test cases
may generate gigabytes of data that may be too heavy to analyze. Moreover, high events
throughputs (thousands of events per second) may overwhelm the disk transfer rate. The drawback
of disabling event storage is that you won't keep any data for this event type on this injector.

A possible smart use of this feature is to disable action events storage for some massive load
injectors (heavy background load), but to store and analyze the results from a couple of load
injectors generating a light load. This way, you get a reduced amount of data, and data is quite
accurate because the corresponding load injectors were far from saturating.

Note that disabling storage of life-cycle events and alarm events is possible but not recommended in
common test cases:

- life-cycle events give an interesting and very lightweight trace of the injector's activity steps,
whatever the test duration, with no noticeable impact on the engine performance;

« the occurrence of alarm events shows that something did wrong during the test, which is key to
the test analysis, while no alarm event is generated when everything goes well.

As a conclusion, storage of life-cycle and alarm events is commonly always useful and never
disturbing.

Dynamic load profile change

In case your scenario defines no load profile, or when you want to dynamically change the
predefined load profile while a test is running, you can change parameter "population” of the ISAC
execution engine. This parameter has the following form: b;=n;;b,=n,;... where b, is the name of a
behavior in the ISAC scenario and 7, is the number of instances (aka virtual users) of this behavior.

When getting the current value of "population" parameter, if the current population is ruled by a
specified load profile, you will get empty values: b;=;b,=,... Since the population may change

55

CLIF user manual guide

accordingly to the load profile, no value is given. Once a population is set for a behavior, the
population for this behavior becomes constant and the load profile for this behavior is definitively
lost. As a result, the test will never complete by itself: you will have to stop it by yourself, at the
moment that seems relevant for you.

Note that increasing a behavior's population through the setting of "population" parameter should be
made carefully: all necessary new virtual users are created at once, and may result in a brutal load
increase on your injector and SUT. Depending on the desired effect, it might be wise to add a
linearly distributed random think time at the beginning of your behavior definition so that virtual
users don't simultaneously start their actual load activity even though their are created at the same
time. Of course, you must anticipate on this when writing the scenario.

56

	1. Introduction
	2. Key concepts
	3. Registry and CLIF servers
	3.1. Rationale
	3.2. Running a Registry
	3.3. Configuring and running a CLIF server

	4. Probes
	4.1. Rationale
	4.2. Available probes
	4.2.1. cpu probe
	4.2.2. disk probe
	4.2.3. memory probe
	4.2.4. network probe
	4.2.5. jvm probe
	4.2.6. jmx_jvm probe
	4.2.7. rtp probe

	5. Load injectors and ISAC
	5.1. Rationale
	5.2. ISAC is a Scenario Architecture for CLIF
	5.2.1. behaviors
	5.2.2. load profiles
	5.2.3. ISAC plug-ins
	5.2.4. Writing an ISAC scenario
	5.2.5. Recording an ISAC scenario for HTTP
	5.2.6. Deploying and executing an ISAC scenario

	5.3. Synchronization pseudo-injector
	5.3.1. Rationale
	5.3.2. Usage
	5.3.3. Alarms

	6. Eclipse-based graphical user interface
	6.1. Introduction
	6.2. Run CLIF registry
	6.3. Test plan edition
	6.4. ISAC scenario edition
	6.5. test deployment and execution

	7. Java Swing-based graphical user interface
	7.1. Introduction
	7.2. Run CLIF registry
	7.3. Test plan edition table
	7.4. Performance and resource usage monitoring
	7.5. File Menu
	7.6. Test plan menu
	7.7. Tools menu
	7.7.1. Basic analyzer
	7.7.2. Quick graphical analyzer
	Report principle
	Datasets

	7.8. Help menu

	8. Command line user interface
	8.1. Introduction
	8.1.1. Rationale
	8.1.2. Choosing the right command line interface

	8.2. Shell script-based command line interface
	8.2.1. Configure the CLIF environment
	8.2.2. Run the CLIF registry
	8.2.3. Run a CLIF server
	8.2.4. Print names of registered CLIF servers
	8.2.5. Wait for registry and CLIF servers
	8.2.6. Deploy a test plan
	8.2.7. Initialize a new test
	8.2.8. Start a test
	8.2.9. Suspend a test
	8.2.10. Resume a test
	8.2.11. Stop a test
	8.2.12. Wait for end of test
	8.2.13. Collect measurements
	8.2.14. Full run of a deployed test
	8.2.15. Deployment and full test run
	8.2.16. Print injector or probe parameters
	8.2.17. Change an injector or probe parameter value
	8.2.18. Print probe help
	8.2.19. Print response times statistics
	8.2.20. Get CLIF version information
	8.2.21. Run graphical tools

	8.3. ant-based command-line interface
	8.3.1. Configure the CLIF environment: config
	8.3.2. Run CLIF Registry: registry
	8.3.3. Run a CLIF server: server
	8.3.4. Print the list of available CLIF servers: listservers
	8.3.5. Wait for registry and CLIF servers: waitservers
	8.3.6. Test plan deployment: deploy
	8.3.7. Test initialization: init
	8.3.8. Test execution start: start
	8.3.9. Suspend test execution: suspend
	8.3.10. Resume test execution: resume
	8.3.11. Stop test execution: stop
	8.3.12. Wait for a test execution to terminate: join
	8.3.13. Collect test results (measurements): collect
	8.3.14. Shortcut for full test execution process: run
	8.3.15. Shortcut for full deployment and execution process: launch
	8.3.16. Get specific runtime parameters of a probe or injector: params
	8.3.17. Change a runtime parameter of a probe or injector: change
	8.3.18. Get help about a probe's arguments: probehelp
	8.3.19. Generate and print a quick statistical report: quickstats
	8.3.20. Get CLIF version information
	8.3.21. Run graphical tools

	9. Using CLIF with Jenkins
	9.1. What to do with it?
	9.2. How to create a CLIF test job
	9.2.1. Rationale
	9.2.2. Create a CLIF test job via SVN or GIT
	9.2.3. Import a CLIF test via the "wizard"

	10. Test results and measurements
	11. Licenses
	Principle
	Where classes and resource files are looked for?
	The ISAC thread pool
	Deadline violation alarms (Job delay)
	Group period
	Scheduler period
	Storage options
	Dynamic load profile change

