diff --git a/forecaster-cnn/.DS_Store b/forecaster-cnn/.DS_Store index 019fd405c5a9606650a9e54a682492254109c24f..109db4b5b3169923bb34b9de005adcad8913d517 100644 Binary files a/forecaster-cnn/.DS_Store and b/forecaster-cnn/.DS_Store differ diff --git a/forecaster-cnn/main.py b/forecaster-cnn/main.py index 75dfcf84c879a6f5c09d2ec1100e02445f02ab85..45d9608052a9b8c750a76d7aa35df522a498a6ff 100755 --- a/forecaster-cnn/main.py +++ b/forecaster-cnn/main.py @@ -322,11 +322,7 @@ class Train(): ########### _start = time.time() data = data.round(decimals=2) - data = missing_data_handling(data, rolling_mean=True) - missing_data = percent_missing(data) - print("---Missing resume---") - print(missing_data) - print("---End resume---") + data = missing_data_handling(data, slinear_interpolation=True, drop_all_nan=True) data = datetime_conversion(data, self.time_column_name) data = important_data(data, self.features) diff --git a/forecaster-cnn/pre_processing/preprocessing.py b/forecaster-cnn/pre_processing/preprocessing.py index f67e23ec896b6a076f43cb2b71961b7c1c15cbec..f77bbd322a2c039795fd999d6ec37f9bd6b94f1c 100755 --- a/forecaster-cnn/pre_processing/preprocessing.py +++ b/forecaster-cnn/pre_processing/preprocessing.py @@ -33,7 +33,7 @@ def percent_missing(data): #TODO here has to be placed a function for handling missing data def missing_data_handling(data ,drop_all_nan = False, fill_with_mean = False, - fill_with_median = False, rolling_mean = False, rolling_median = False): + fill_with_median = False, rolling_mean = False, rolling_median = False, slinear_interpolation=False): def drop_all_nan(data): data = data.dropna() @@ -103,10 +103,7 @@ def missing_data_handling(data ,drop_all_nan = False, fill_with_mean = False, data.assign(InterpolateSpline4=data.target.interpolate(method='spline', order=5)) return data - - if drop_all_nan == True: - data = drop_all_nan(data) - elif fill_with_mean == True: + if fill_with_mean == True: data = fill_with_mean(data) elif fill_with_median == True: data = fill_with_median(data) @@ -136,6 +133,8 @@ def missing_data_handling(data ,drop_all_nan = False, fill_with_mean = False, data = spline_interpolate4(data) elif spline_interpolate5 == True: data = spline_interpolate5(data) + elif drop_all_nan == True: + data = drop_all_nan(data) else: pass