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Executive Summary
Cloud computing provides ubiquitous networked access to a shared and virtual-
ised pool of computing capabilities that can be provisioned with minimal man-
agement effort [23]. Cloud applications are deployed on cloud infrastructures
and delivered as services. The PaaSage project aims to facilitate the model-
ling and execution of cloud applications by leveraging model-driven engineering
(MDE) and by exploiting multiple cloud infrastructures. Models enable the ab-
straction from the implementation details of heterogeneous cloud services, while
model transformations facilitate the automatic generation of the source code that
exploits these services. The Cloud Application Modelling and Execution Lan-
guage (CAMEL) is the core modelling and execution language developed in
the PaaSage project and enables the specification of multiple aspects of cross-
cloud applications (i.e., applications deployed across multiple private, public,
or hybrid cloud infrastructures). By exploiting models at both design- and run-
time, and by allowing both direct and programmatic manipulation of models,
CAMEL enables the management of self-adaptive cross-cloud applications (i.e.,
cross-cloud applications that autonomously adapt to changes in the environment,
requirements, and usage). In this document, we describe the design and imple-
mentation of CAMEL. Moreover, we provide a real-world running example to
illustrate how to specify models in a concrete textual syntax and how to pro-
grammatically manipulate and persist them through Java APIs.
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1 Introduction
MDE is a branch of software engineering that aims to improve the productivity,
quality, and cost-effectiveness of software development by shifting the paradigm
from code-centric to model-centric. MDE promotes the use of models and model
transformations as the primary assets in software development, where they are
used to specify, simulate, generate, and manage software systems. This approach
is particularly relevant when it comes to the modelling and execution of cross-
cloud applications (i.e., applications deployed across multiple private, public, or
hybrid cloud infrastructures). This solution allows to exploit the peculiarities of
each cloud service and hence to optimise the performance, availability, and cost
of the applications.

Models can be specified using general-purpose languages like the Unified
Modeling Language (UML) [27]. However, to fully unfold the potential of
MDE, models are frequently specified using domain-specific languages (DSLs),
which are tailored to a specific domain of concern. The PaaSage1 project exploits
the latter approach and provides an integrated platform to support the modelling
and execution of cross-cloud applications. To achieve this goal, PaaSage de-
veloped the Cloud Application Modelling and Execution Language (CAMEL).
This DSL allows to specify multiple aspects of cross-cloud applications, such
as provisioning, deployment, service level, monitoring, scalability, providers,
organisations, users, roles, security, and execution.

CAMEL supports the models@run-time [5] approach, which provides an ab-
stract representation of the underlying running system, whereby a modification
to the model is enacted on-demand in the system, and a change in the system is
automatically reflected in the model.

Reasoning engine

Models
@run-time

(1) (2)

Target	
model

Diff (3)

Adaptation
engine

(4)
(4)

Current	
model

Running	system

Figure 1: Models@run-time architecture

1http://www.paasage.eu
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Fig. 1 depicts the architecture of models@run-time. A reasoning engine
reads the current model (step 1) and produces a target model (step 2). Then,
the run-time environment computes the difference between the current model
and the target one (step 3). Finally, the adaptation engine enacts the adaptation
by modifying only the parts of the cross-cloud application necessary to account
for the difference and the target model becomes the current model (step 4).

CAMEL was designed and implemented to allow the design-time specific-
ation of models by users as well as their run-time manipulation by reasoners.
By exploiting models at both design- and run-time, and by allowing both dir-
ect and programmatic manipulation of models, CAMEL enables the manage-
ment of self-adaptive cross-cloud applications (i.e., cross-cloud applications that
autonomously adapt to changes in the environment, requirements, and usage).
This represents the main motivation for our research and contribution of our
work, since, to the best of our knowledge, no other integrated language in the lit-
erature supports the management of self-adaptive cross-cloud applications (see
Section 17).

Structure of the document: The remainder of the document is organised
as follows. Section 2 describes the role of CAMEL models in a self-adaptation
workflow. Section 3 presents some technologies used to design and implement
CAMEL. Section 4 provide instructions for installing and using the CAMEL
Textual Editor. Sections 5–15 present the various packages of the CAMEL
metamodel along with corresponding sample models in concrete syntax. Sec-
tion 16 exemplifies the usage of Java APIs to programmatically manipulate and
persist models. Finally, Section 17 compares the proposed approach with related
work, while Section 18 draws conclusions and outlines plans for future work.

2 CAMEL and the Self-Adaptation Workflow
The components managing the life cycle of cross-cloud applications are in-
tegrated by leveraging CAMEL models. These models are progressively re-
fined throughout the modelling, deployment, and execution phases of a self-
adaptation workflow based on the models@run-time approach, as proposed in
PaaSage [33].

Figure 2 shows the self-adaptation workflow. The white trapezes represent
the activities performed by the user. The white rectangles represent the processes
executed by the PaaSage platform. The coloured shapes represent the modelling
artefacts, whereby the blue ones pertain to the modelling phase, the red ones to
the deployment phase, and the green ones to the execution phase.

In the remainder of the document, we adopt the Scalarm2 [21] use case as
2http://www.scalarm.com/
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Figure 2: CAMEL models in the self-adaptation workflow

a real-world running example to illustrate how to specify multiple aspects of
cloud applications in CAMEL, and how these specifications facilitate the de-
ployment of cloud applications across multiple clouds and their self-adaptation
to changes in the environment, requirements, and usage. Scalarm is a massively
self-scalable platform for data farming. Data farming experiments utilise high-
performance and high-throughput computing to generate large amounts of data
via simulations. These data are analysed to obtain new insights into the studied
phenomena. The architecture of Scalarm is based on the principles of service-
oriented architecture (SOA) and consists of the following services:

• Experiment Manager provides a graphical user interface to coordinate the
execution of data farming experiments.

• Simulation Manager provides a wrapper to execute the simulations on
multiple computational infrastructures.

As data farming experiments are often executed on a large amount of com-
putational infrastructures and across multiple data centres, the Scalarm use case
is particularly suitable to illustrate the features of CAMEL.

Modelling phase. The users design a cloud provider-independent model (CPIM),
which specifies the deployment of a cross-cloud application along with its re-
quirements and objectives (e.g., on virtual hardware, location, and service level)
in a cloud provider-independent way.
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Figure 3(a) shows the CPIM of Scalarm in graphical syntax. It consists of an
Experiment Manager (represented by ExpMan) hosted on a GNU/Linux virtual
machine (represented by Linux). Moreover, the Experiment Manager communic-
ates with a Simulation Manager (represented by SimMan) hosted on a GNU/Linux
virtual machine in a data centre in Norway. Finally, the Experiment Manager has
a service-level objective specifying that the response time must be below 100 ms.

Amazon	EC2
[location =	EU]

SINTEF
[location	=	NO][location:	NO]

ExpMan
[resp. time
< 100 ms]

Linux

SimMan

Linux

expMan1

ubuntu1

simMan1

centos1

simMan2

centos2

CPIM CPSM

(a) (b)

Types

ExpMan

SimMan

Linux

Figure 3: Sample CAMEL models: (a) CPIM; (b) CPSM

Deployment phase. The Profiler component consumes the CPIM, matches
this model with the profile of cloud providers, and produces a constraint prob-
lem. The Reasoner component solves the constraint problem (if possible) and
produces a cloud provider-specific model (CPSM), which specifies the deploy-
ment of a cross-cloud application along with its requirements and objectives in a
cloud provider-specific way. The Adapter component consumes the CPSM and
produces deployment plans, which specify the platform-specific details of the
deployment.

For instance, the Profiler could match the CPIM of Scalarm with the pro-
file of cloud providers, identify Amazon EC2, Google Compute Engine, and
Azure as the three cloud providers satisfying the virtual hardware requirements
and service-level objectives of the Experiment Manager (response time below
100 ms). Moreover, the Profiler could identify SINTEF3 and EVRY4 as the two
cloud providers satisfying the virtual hardware and location requirements of the
Simulation Manager (data centre in Norway), and produce a corresponding con-
straint problem. Then, the Reasoner could rank Amazon and SINTEF as the
best cloud providers to satisfy these requirements and produce a corresponding
CPSM.

Figure 3(b) shows the CPSM in graphical syntax. It consists of an Experi-
ment Manager instance, which is hosted on a Ubuntu 14.04 instance at Amazon

3https://www.sintef.no/en/
4https://www.cloudservices.no/
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EC2 in the EU. Moreover, the Experiment Manager instance communicates with
two Simulation Manager instances, which are hosted on two CentOS 7 virtual
machine instances at SINTEF in Norway.

Execution phase. The Executionware consumes the deployment plans and
enacts the deployment of the application components on suitable cloud infra-
structures. The PaaSage platform records monitoring data about the application
execution from the Executionware, which allows the Reasoner to continuously
revise the solution to the constraint problem to better exploit the cloud infra-
structures.

3 Technologies
In order to design and implement CAMEL, we adopted the Eclipse Modeling
Framework (EMF)5 along with Object Constraint Language (OCL) [26], Xtext6,
and Connected Data Objects (CDO).7 In the following, we outline these tech-
nologies and describe how they facilitate the implementation of the PaaSage
platform described in Section 2.

Eclipse Modeling Framework (EMF). In MDE, the abstract syntax of a DSL
is typically defined by its metamodel, which describes the set of concepts, their
attributes, and their relations, as well as the rules for combining these concepts
to specify valid models conforming to this metamodel [27]. EMF is a model-
ling framework that facilitates defining DSLs. It provides the Ecore metamodel,
which is an Ecore model that conforms to itself (i.e., it is reflexive). The CAMEL
metamodel is an Ecore model that conforms to the Ecore metamodel.

EMF allows to generate a Java class hierarchy representation of a metamodel.
The Java representation provides a set of APIs that allows the programmatic
manipulation of models.

Object Constraint Language (OCL). EMF enables to check the cardinality
constraints on properties and to validate models against their metamodels. How-
ever, it lacks the expressiveness required to capture all of the semantics of the do-
main. OCL is a declarative language for specifying expressions on metamodels
that are evaluated on models conforming to these metamodels. Eclipse OCL8 is
a tool-supported implementation of OCL that integrates with EMF. The CAMEL

5https://www.eclipse.org/modeling/emf/
6https://eclipse.org/Xtext/
7https://www.eclipse.org/cdo/
8http://wiki.eclipse.org/OCL

CAMEL Documentation Page 9 of 56

https://www.eclipse.org/modeling/emf/
https://eclipse.org/Xtext/
https://www.eclipse.org/cdo/
http://wiki.eclipse.org/OCL


metamodel is annotated with OCL expressions to capture part of the semantics
of cross-cloud applications and to guarantee the consistency, correctness, and
integrity of CAMEL models at both design-time and run-time.

Xtext. In MDE, the concrete syntax describes the textual or graphical notation
that renders the concepts, attributes, and relations in the abstract syntax. The
concrete syntax may vary depending on the domain, e.g., a DSL could provide
a textual notation as well as a graphical notation along with the corresponding
serialisation in XML Metadata Interchange (XMI) [28]. Xtext is a language
development framework that is based on- and integrates with EMF. It facilitates
the implementation of Eclipse-based IDEs providing features, such as syntax
highlighting, code completion, code formatting, static analysis, and serialisation.
The concrete syntax of CAMEL is a textual syntax defined as an Xtext grammar.
The textual syntax was preferred over the graphical syntax by the early adopters
of CAMEL.

Connected Data Objects (CDO). CDO is semi-automated persistence frame-
work that works natively with Ecore models and their instances. It provides
a model repository where clients can persist, share, and query their models.
It provides features that satisfy the design-time and run-time requirements of
the self-adaptation workflow (see Section 2), such as abstraction from database
management systems (DBMSs), validation, transactional processing, optimistic
versioning [36], automatic notification, auditing, and role-based security [19].

Thanks to the combination of EMF, Eclipse OCL, and Xtext, we realised the
CAMEL Textual Editor, which allows users not only to specify CAMEL models
but also to validate them. Moreover, thanks to these technologies and CDO,
we realised the models@run-time approach, which allows multiple reasoners to
progressively refine CAMEL models throughout the various phases of the self-
adaptation workflow (see Section 2).

4 Installation and Usage of CAMEL Textual
Editor
In this section, we provide instructions for installing and using the CAMEL Tex-
tual Editor. These steps have been tested with the latest version of Eclipse, which
at the time of writing is Eclipse Neon v4.6.0. We distinguish between the install-
ation for users and for developers.
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4.1 Installation—Users
• Download and install “Eclipse IDE for Java and DSL Developers” from:
https://www.eclipse.org/downloads/

• Start Eclipse

• Select Help > Install New Software. . .

• Select Work with: Neon—http://download.eclipse.org/releases/neon

• Select Modeling > CDO Model Repository SDK

• Select Modeling > OCL Classic SDK: Ecore/UML Parsers,Evaluator,Edit

• Select Modeling > OCL Examples and Editors

• Install the three packages

• Download org.ow2.paasage.camel_2015.9.1.jar, org.ow2.paasage.camel.
dsl_2015.9.1.jar, and org.ow2.paasage.camel.dsl.ui_2015.9.1.jar from:
http://jenkins.paasage.cetic.be/job/CAMEL/

• Copy the three jar files to the eclipse/plugins folder

• Restart Eclipse

4.2 Installation—Developers
• Clone the CAMEL Git repository from: https://tuleap.ow2.org/
plugins/git/paasage/camel

• Download and install “Eclipse IDE for Java and DSL Developers” from:
https://www.eclipse.org/downloads/

• Start Eclipse

• Select Help > Install New Software. . .

• Select Work with: Neon—http://download.eclipse.org/releases/neon

• Select Modeling > CDO Model Repository SDK

• Select Modeling > OCL Classic SDK: Ecore/UML Parsers,Evaluator,Edit

• Select Modeling > OCL Examples and Editors
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• Install the three packages

• Restart Eclipse

• Select Import > Existing Projects into Workspace

• Select Browse. . .

• Select the folder where you cloned the CAMEL Git repository

• Select Finish

• Select eu.paasage.camel.dsl/src/eu.paasage.camel.dsl/GenerateCamelDsl.mwe2

• Select Run As > MWE2 Workflow. . .

• Select eu.paasage.camel.dsl

• Select Run > Run As > Eclipse Application. . .

4.3 Usage
• Add a (general) project

• Add a new file (or open an existing one) with .camel extension to the
project

• Accept to add the Xtext nature to the project

• Restart Eclipse

• Read the remainder of this document

• Edit the file

5 CAMEL Design and Syntax
CAMEL has been designed based on the following requirements, among others:

• Cloud provider-independence (R1): CAMEL should support a cloud provi-
der-agnostic specification of multiple aspects of cross-cloud applications
(i.e., provisioning, deployment, service level, monitoring, scalability, pro-
viders, organisations, users, roles, security, and execution). This will pre-
vent vendor lock-in.
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• Separation of concerns (R2): CAMEL should support loosely-coupled
packages (or modules) corresponding to multiple aspects of cross-cloud
applications. This will facilitate the development of models.

• Reusability (R3): CAMEL should support reusable types for multiple as-
pects of cross-cloud applications. This will ease the evolution of models.

• Abstraction (R4): CAMEL should provide an up-to-date, abstract repres-
entation of the running system. This will enable the reasoning, simulation,
and validation of the adaptation actions before their enactment.

CAMEL is inspired by component-based approaches, which facilitate sep-
aration of concerns (R2) and reusability (R3). In this respect, deployment mod-
els can be regarded as assemblies of components exposing ports, and bindings
between these ports.

In addition, CAMEL implements the type-instance pattern [1], which also
facilitates reusability (R3) and abstraction (R4). This pattern exploits two flavours
of typing, namely ontological and linguistic [22]. Figure 4 illustrates these two
flavours of typing. SL (short for Small GNU/Linux) represents a reusable type
of virtual machine. It is linguistically typed by the class VM (short for virtual
machine). SL1 represents an instance of the virtual machine SL. It is ontologically
typed by SL and linguistically typed by VMInstance.

VM	   VMInstance	  

SL	   SL1	  

linguistic 
typing 

ontological 
typing 

Metamodel 

Model 

Figure 4: Linguistic and ontological typing

CAMEL and the CAMEL Textual Editor are available under Mozilla Public
License 2.09 in the Git repository at OW2.10 The CAMEL metamodel is an
Ecore model organised into packages, whereby each package reflects an aspect
(or domain).

As mentioned, in the remainder of the document, we adopt the Scalarm11 [21]
use case as a real-world running example to illustrate how to specify CAMEL

9https://www.mozilla.org/en-US/MPL/2.0/
10https://tuleap.ow2.org/plugins/git/paasage/camel
11http://www.scalarm.com/
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models in textual syntax. The complete Scalarm CAMEL model in textual syn-
tax can be downloaded from the Git repository at OW2.12 This running example
covers the most commonly used concepts in CAMEL. The interested reader may
refer to [35] for a complete description of the abstract syntax of CAMEL.

Listing 5.1: Scalarm sample application

1 camel model ScalarmModel {
2
3 application ScalarmApplication {
4 version: ’v1.0’
5 owner: AGHOrganisation.morzech
6 deployment models [ScalarmModel.ScalarmDeployment]
7 }
8
9 organisation model AGHOrganisation {

10 ...
11 user morzech {
12 ...
13 }
14 }
15
16 deployment model ScalarmDeployment {
17 ...
18 }
19 }

Listing 5.1 shows an excerpt of the CAMEL model of Scalarm in textual
syntax. An element of a CAMEL model is specified by the name of the ele-
ment followed by an identifier in CamelCase and a block delimited by curly
brackets. camel model ScalarmModel {...} specifies the CAMEL model of Scal-
arm, where ScalarmModel represents the identifier of this model. application

ScalarmApplication specifies the Scalarm application itself.
A property is specified by the name of the property followed by a colon and

a value. version: ’v1.0’ specifies that the Scalarm application has version 1.0.
A reference to a single element is specified by the name of the reference fol-

lowed by a colon and a fully qualified name conforming to the pattern:
id1.id2.. . . .idn, where idi refers to element at the ith level of the containment
path and idn refers to the element at the leaf level, which is the element un-
der discussion. owner: AGHOrganisation.morzech specifies that the application
is owned by the user Michal Orzechowski by referring to the user morzech in the
organisation model AGHOrganisation (see Section 9, Listing 9.1).

Finally, a reference to a list of elements is specified by the name of the ref-
erence followed by a comma separated list of fully qualified names delimited by
square brackets.13 deployment models [ScalarmModel.ScalarmDeployment] spe-

12https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&
f=examples/Scalarm.camel

13Note that the colon is not used in this case.

CAMEL Documentation Page 14 of 56

https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&f=examples/Scalarm.camel
https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&f=examples/Scalarm.camel


cifies that the Scalarm application has one deployment model by referring to the
deployment model ScalarmDeployment (see Section 6, Listing 6.1).

6 Deployment
The deployment package of the CAMEL metamodel is based on CloudML14 [12,
10, 11], which was developed in collaboration with the MODAClouds project.15

CloudML consists of a tool-supported DSL for modelling and enacting the pro-
visioning and deployment of cross-cloud applications, as well as for facilitating
their dynamic adaptation, by leveraging MDE techniques and methods. In the
following, we exemplify the main concepts in the deployment package.

Assume that we have to specify the Experiment Manager component of the
Scalarm use case. Listing 6.1 shows this specification in textual syntax.

internal component ExperimentManager specifies a reusable type of the com-
ponent Experiment Manager. provided communication ExpManPort specifies that
the Experiment Manager provides its features through port 443. required commu-

nication SimManPortReq specifies that the Experiment Manager requires features
from the Simulation Manager through port 80 (cf. Listing 6.3 for the corres-
ponding specification of the communication binding). The property mandatory

of SimManPortReq specifies that the Experiment Manager depends on the features
of the Simulation Manager, and hence, that the Simulation Manager has to be de-
ployed and started before the Experiment Manager. required host CoreInten-

siveUbuntuNorwayReq specifies that the Experiment Manager requires a virtual
machine that provides a large number of CPU cores, runs the operating system
Ubuntu, and is located in Norway (cf. Listing 6.2 for the specification of the VM
and VM requirements, and Listing 6.4 for the specification of the corresponding
hosting binding).

configuration ExperimentManagerConfiguration specifies the commands to
handle the life cycle of the Experiment Manager. download, install, and start

specify the OS-specific shell scripts (in this case, Bash scripts) for download-
ing, installing, and starting the Experiment Manager, respectively. Note that,
although not shown in this example, it is also possible to specify the configure

and stop commands of a component.
The aforementioned commands are used by the Executionware during the

execution phase to enact the deployment of the application components and to
manage their life cycles (see Section 6.1).

Listing 6.1: Scalarm sample internal component

14http://cloudml.org
15http://www.modaclouds.eu
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1 deployment model ScalarmDeployment {
2
3 internal component ExperimentManager {
4 provided communication ExpManPort {port: 443}
5 required communication SimManPortReq {port: 80 mandatory}
6 required host CoreIntensiveUbuntuNorwayHostReq
7
8 configuration ExperimentManagerConfiguration {
9 download: ’wget http://www.scalarm.com/scalarm_exp_man.sh &&

chmod +x scalarm_exp_man.sh’
10 install: ’./scalarm_exp_man.sh install’
11 start: ’./scalarm_exp_man.sh start’
12 }
13 }
14 ...

Then, assume that we have to specify the virtual machine on which the Ex-
periment Manager can be deployed. Listing 6.2 shows this specification in tex-
tual syntax.

vm CoreIntensiveUbuntuNorway specifies a reusable type for a virtual ma-
chine. requirement set refers to the aforementioned requirement set CoreInten-
siveUbuntuNorwayRS. provided host CoreIntensiveUbuntuNorwayPort specifies
that the virtual machine provides a large number of CPU cores, runs the operat-
ing system Ubuntu, and is located in Norway (cf. Listing 6.4 for the specification
of the corresponding hosting binding).

requirement set CoreIntensiveUbuntuNorwayRS specifies a reusable set of re-
quirements for a virtual machine. quantitative hardware, os, and location refer
to the requirements CoreIntensive, Ubuntu, and NorwayReq, respectively, in the
requirement model ScalarmRequirement (cf. Listing 7.1), which in turn specify
the hardware requirements encompassing a large number of CPU cores, the op-
erating system requirement of Ubuntu, and the location requirement of Norway,
respectively.

Listing 6.2: Scalarm sample vm

1 ...
2 vm CoreIntensiveUbuntuNorway {
3 requirement set CoreIntensiveUbuntuNorwayRS
4 provided host CoreIntensiveUbuntuNorwayPort
5 }
6
7 requirement set CoreIntensiveUbuntuNorwayRS {
8 quantitative hardware: ScalarmRequirement.CoreIntensive
9 os: ScalarmRequirement.Ubuntu

10 location: ScalarmRequirement.NorwayReq
11 }
12 ...

Next, assume that we have to specify the communication binding between
the Experiment Manager and the Simulation Manager. Listing 6.3 shows this
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specification in textual syntax.
communication ExperimentManagerToSimulationManager specifies a reusable

type of communication binding between the Experiment Manager and the Sim-
ulation Manager. The from .. to .. block specifies that the communication
binding is from the required communication port SimManPortReq of the com-
ponent ExperimentManager to the provided communication port SimManPort of
the component SimulationManager. type: REMOTE specifies that the Experiment
Manager and the Simulation Manager must be deployed on separate virtual ma-
chine instances. Note that this property could have a value ANY (default) to spe-
cify that the components at each end of the communication can be deployed on
any virtual machine instance(s), or LOCAL to specify that the components must be
deployed on the same virtual machine instance.

Listing 6.3: Scalarm sample communication

1 ...
2 communication ExperimentManagerToSimulationManager {
3 from ExperimentManager.SimManPortReq to SimulationManager.

SimManPort
4 type: REMOTE
5 }
6 ...

Finally, assume that we have to specify the hosting binding between the Ex-
periment Manager and the virtual machine CoreIntensiveUbuntuNorway. List-
ing 6.4 shows this specification in textual syntax.

hosting ExperimentManagerToCoreIntensiveUbuntuNorway specifies a reusable
type of hosting binding between the Experiment Manager and the virtual ma-
chine CoreIntensiveUbuntuNorway. The from .. to .. block specifies that the
hosting binding is from the required hosting port CoreIntensiveUbuntuNorwayPort-
Req of the component ExperimentManager to the provided hosting port CoreInten-
siveUbuntuNorwayPortReq of the virtual machine CoreIntensiveUbuntuNorway.

Listing 6.4: Scalarm sample hosting

1 ...
2 hosting ExperimentManagerToCoreIntensiveUbuntuNorway {
3 from ExperimentManager.CoreIntensiveUbuntuNorwayPortReq to

CoreIntensiveUbuntuNorway.CoreIntensiveUbuntuNorwayPort
4 }
5 ...

The types presented above can be instantiated in order to form a CPSM. In
PaaSage, the instances within the deployment model are automatically manip-
ulated during the deployment phase (see Section 2). In the general case, the
instances could also be manipulated manually. Note that different CPSMs can
adopt different instantiation patterns for communications and hosting bindings,
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while still conforming to the same CPIM. The interested reader may refer to [7]
for an extensive discussion on the subject.

Listing 6.5 shows the specification of instances of the components, virtual
machines, communications, and hosting bindings from the previous examples
(cf. Listings 6.1, 6.2, 6.3, and 6.4) in textual syntax.

vm instance CoreIntensiveUbuntuNorwayInst specifies an instance of a vir-
tual machine. vm type and vm type value refer to the virtual machine flavour
M1.LARGE in the provider model SINTEFProvider (cf. Listing 10.1), which is com-
patible with the requirement set of the virtual machine template CoreIntensive-

UbuntuNorway (cf. Listing 7).
internal component instance ExperimentManagerInst specifies an instance of

the component ExperimentManager. The connect .. to .. typed .. and host

.. on .. typed .. blocks specify instances of the communication Experiment-

ManagerToSimulationManager and the hosting ExperimentManagerToCoreIntensive-

UbuntuNorway, respectively. typed refers to the identifier of the corresponding
type.

Listing 6.5: Scalarm sample instances of internal component, vm, communication,
and hosting

1 ...
2 vm instance CoreIntensiveUbuntuNorwayInst typed ScalarmModel.

ScalarmDeployment.CoreIntensiveUbuntuNorway {
3 vm type: ScalarmModel.SINTEFProvider.SINTEF.VM.VMType
4 vm type value: ScalarmModel.SINTEFType.VMTypeEnum.M1.LARGE
5 provided host instance CoreIntensiveUbuntuNorwayHostInst typed

CoreIntensiveUbuntuNorway.CoreIntensiveUbuntuNorwayHost
6 }
7
8 internal component instance SimulationManagerInst typed ScalarmModel

.ScalarmDeployment.SimulationManager {
9 provided communication instance SimManPortInst typed

SimulationManager.SimManPort
10 required host instance SimulationIntensiveUbuntuNorwayHostReqInst

typed SimulationManager.SimulationIntensiveUbuntuNorwayHostReq
11 }
12
13 internal component instance ExperimentManagerInst typed ScalarmModel

.ScalarmDeployment.ExperimentManager {
14 provided communication instance ExpManPortInst typed

ExperimentManager.ExpManPort
15 required communication instance SimManPortReqInst typed

ExperimentManager.Si,ManPortReq
16 required host instance CoreIntensiveUbuntuNorwayHostReqInst typed

ExperimentManager.CoreIntensiveUbuntuNorwayHostReq
17 }
18
19 connect ExperimentManagerInst.SimManPortReqInst to

SimulationManagerInst.SimManPortInst typed ScalarmModel.
ScalarmDeployment.ExperimentManagerToSimulationManager

20
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21 host ExperimentManagerInst.CoreIntensiveUbuntuNorwayHostReqInst on
CoreIntensiveUbuntuNorwayInst.CoreIntensiveUbuntuNorwayHostInst
typed ScalarmModel.ScalarmDeployment.
ExperimentManagerToCoreIntensiveUbuntuNorway

22 ...

6.1 Interplay with Executionware
In order to execute a cloud application, the Executionware provisions VMs, de-
ploys one or more component instances on these VMs, and starts these instances
by relying on a cross-cloud orchestration framework. In PaaSage, this cross-
cloud orchestration framework is Cloudiator [6]. Note the Executionware can
solely rely on the information provided in a CAMEL model. Hence, the Execu-
tionware does not make any assumptions besides the information provided.

In order to steer the individual instances of internal components, the Execu-
tionware relies on handlers that have been specified in the configuration of an
internal component. The handlers are invoked in the following order:

1. download

2. install

3. configure

4. start

6.1.1 Life Cycle Scripts for Unix-based Applications
As stated above, the Executionware relies on the deployment model within a
CAMEL model, and in particular on the configuration block of internal compo-

nents, in order to manage the component instances. For GNU/Linux deploy-
ments, all of the handlers are executed as a single Unix shell script (e.g., com-
patible with Bash) that has to be specified in the configuration block of internal
components (e.g., for downloading the executable code of the component). A re-
turn value different from 0 is interpreted as an error and causes the component
instance to move to an error state. Data about ports and connection information
as well as the local host is provided via environment variables.

Note that the different handlers are not necessarily executed in the very same
instance of the Unix shell. This means that custom environment variables set
in a handler (e.g., in the download command) are not necessarily available in
later handlers. If such information is required, the only approach is to write the
necessary data to a file and source this file in later handlers. For GNU/Linux
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deployments, all component instances are run within an own Docker container16

in order to enable a maximum of isolation between the instances. This has a
consequence for user handling and networking: As for the users, this means that
all commands are executed as root. Also, the handlers cannot assume that any
other user beside root exists in the system. Hence, if further users are required,
the handlers are responsible for creating them. As for networking, the effects on
both IP addresses and port numbers are discussed in the following.

IP Addresses in the Execution Environment. First, all components have at
least two IP addresses, namely the IP address of their Docker container and the
IP address of the virtual machine this container is hosted on. Often, the IP of the
virtual machine is a cloud-internal IP address that is not routed outside the cloud
provider. Hence, it is very likely that there is a third IP address involved that
represents the public IP address of the virtual machine. All three IP addresses
are passed to configuration and start handlers as environment variables using
the following formats:

• CONTAINER_IP: the IP address of the container. It should be used for binding
purposes.

• CLOUD_IP: the IP address of the virtual machine running the container. This
IP is probably cloud provider-specific and cannot be reached from outside
the cloud.

• PUBLIC_IP: the public IP address of the virtual machine running the con-
tainer, if available.

Port Numbers in the Execution Environment. Moreover, the port numbers
used within the container do not necessarily match the port numbers used by the
operating system hosting the Docker container. Indeed, the Executionware will
not force the use of any fixed port numbers outside the container in order to allow
maximum flexibility. Again, the port numbers are passed to the configuration

and start handlers as environment variables. The name of the variable is based
on the name of the provided communication from the deployment model. For in-
stance, the provided port ExpManPort from Listing 6.1 is mapped to the following
three environment variables:

• CONTAINER_EXPMANPORT: the port number as specified in the deployment
model and as accessible from within the container. Should be used for
binding.

16http://docker.io
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• CLOUD_EXPMANPORT: the port number as accessible from within the cloud.

• PUBLIC_EXPMANPORT: the port number as accessible from the outside world
(i.e., by using the public IP).

Outgoing Connections in the Execution Environment. Similar to the provid-
ed communications, there is a mapping for required communications. The main
difference is that it uses sets of IP addresses in combination with ports. For
instance, the required port StoManPortReq from Listing 6.1 is mapped to the fol-
lowing three environment variables; all consisting of a sequence of ipv4:port

separated by a comma (,).

• PUBLIC_STOMANPORTREQ: provides access to the public IP addresses and pub-
lic ports of all downstream component instances.
<stoman1publicip>:<public_port>,<stoman2publicip>:<public_port>

• CLOUD_STOMANPORTREQ: provides access to the cloud-internal IP addresses
and cloud-internal ports of all downstream component instances. Note
that the addresses of component instances that are not hosted in the same
cloud as the local component instances are still in the list, but it is very
likely that traffic cannot be routed to them.
<stoman1cloudip>:<cloud_port>,<stoman2cloudip>:<cloud_port>

• CONTAINER_STOMANPORTREQ: provides access to the container-internal IP ad-
dresses and container-internal ports of all downstream component instances.
Note that the addresses of component instances that are not hosted in the
same container as the local component instances are still in the list, but it
is very likely that traffic cannot be routed to them.
<stoman1containerip>:<container_port>,<stoman2containerip>:

<container_port>

Currently, it is up to the CAMEL user to decide which of the combinations
is needed. Using the public IPs and ports enables a full routability of network
traffic, but may introduce networking overhead. Future work may improve upon
this status quo by providing the shortest distance combinations of the addresses.

Updating Required Communications. Whenever the set of downstream in-
stances changes (e.g., a new Storage Manager instance is created), the start

handler of the associated required communication is invoked. This should lead
to an updated configuration and if necessary a re-started main process.
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The Start Life Cycle Scripts. The life cycle script attached to start is a spe-
cial script. It is supposed to not return from its call. As such, the Execution
Environment will use exec <install command from CAMEL>. This means that the
CAMEL user shall not use more than one command in the install handler, as
e.g., cd directory && ./run.sh will not work. The same holds for cd directory

; ./run.sh. Use directory/run.sh instead.

Other Environment Variables. Per default, Docker uses only very few en-
vironment variables in a default container, except for HOME (home of the current
user—root by default), PWD (current working directory—/ by default), and PATH.
Users should not rely on any of these.

6.1.2 Life Cycle Scripts for Windows-based Applications
For Windows-based deployments the Executionware relies on the same deploy-
ment model as GNU/Linux deployments, mainly the configuration block of
internal components. All handlers are executed as a single Powershell script.
The return value will be interpreted and a value different from 0 will move the
instance to an error state. Information about ports, connection and the local host
is provided via environment variables.

Like on GNU/Linux, the different handlers are not necessarily executed in
the very same shell instance, in particular the same Powershell instance. If cus-
tom environment variables are set in a handler which will be used in a later hand-
ler they have to be set on the user-level. In Powershell this can be achieved with
the command [Environment]::SetEnvironmentVariable($NAME, $VALUE, "User").
$NAME and $VALUE represent the respective parameters and the static value "User"

specifies the user-level for the environment variable. For Windows deployments
every component runs in its own folder. All commands are executed as Adminis-

trator and no other existing users can be assumed. If further users are required,
the handlers are responsible for creating them. The networking is discussed in
the following.

IP Addresses in the Execution Environment. Unlike Unix components, Win-
dows components have at least one IP address. Depending on the cloud provider,
it is possible that this IP is a cloud-internal IP and there is a second IP address
that represents the public IP address of the virtual machine. Both IP addresses
are passed to configuration and start handlers as environment variables:

• CLOUD_IP: the IP address of the virtual machine running the component.
This IP is probably cloud provider-specific and cannot be reached from
outside the cloud.
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• PUBLIC_IP: the public IP address of the virtual machine running the com-
ponent, if available.

Port Numbers in the Execution Environment. As Windows components just
run in an unique folder and not in a container like Unix components there is
a small difference. The port numbers of Windows components match the port
numbers of the virtual machine’s operating system. The port numbers are passed
to the configuration and start handlers as environment variables. The name
of the variable is based on the name of the provided communication from the
deployment model. Considering the example from Listing 6.1 as a Windows
component the resulting two environment variables are set:

• CLOUD_EXPMANPORT: the port number as accessible from within the cloud.

• PUBLIC_EXPMANPORT: the port number as accessible from the outside world
(i.e., by using the public IP).

Outgoing Connections in the Execution Environment. The mapping of re-
quired communications is similar to Unix components (cf. Section 6.1.1) except
there is no need to map the communication to a container-internal IP. Again,
consider Listing 6.1 as a Windows component the required port is mapped to the
following environment variables:

• PUBLIC_STOMANPORTREQ: provides access to the public IP addresses and pub-
lic ports of all downstream component instances.
<stoman1publicip>:<public_port>,<stoman2publicip>:<public_port>

• CLOUD_STOMANPORTREQ: provides access to the cloud-internal IP addresses
and cloud-internal ports of all downstream component instances. Note
that addresses of component instances not hosted in the same cloud as
the local component instance are still in the list, but very likely cannot be
routed to.
<stoman1cloudip>:<cloud_port>,<stoman2cloudip>:<cloud_port>

Updating Required Communications. Whenever the set of downstream in-
stances changes (e.g., a new Storage Manager instance is created), the start

handler of the associated required communication is invoked. This should lead
to an updated configuration and if necessary a re-started main process.

The Start Life Cycle Scripts. In contrast to Unix components, for Windows
components the start command is supposed to return from its call. It is also
possible to use more than one command like in all other handlers.
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Other Environment Variables. The default Windows environment variables
are set (e.g., HOMEPATH or ProgramData), but the user should be aware that the
environment variables can differ depending on the operating system version.

7 Requirements
The requirement package of the CAMEL metamodel is not based on existing
DSLs and has been developed to enable the specification of requirements for
cross-cloud applications. A requirement can be hard, such as a service level
objective (SLO) (e.g., response time < 100 ms), meaning that it is measurable
and must be satisfied, or soft, such as a optimisation objective (e.g., maximise
performance), meaning that it is not measurable. A soft requirement has a pri-
ority from 0.0 to 1.0 that is used to rank these requirements when reasoning on
the application and generating a new CPSM. In the following, we exemplify the
main concepts in the requirement package.

Assume that we have to specify the requirements for the components of the
Scalarm use case. Listing 7.1 shows this specification in textual syntax.

quantitative hardware CoreIntensive specifies that a virtual machine must
have from 8 to 32 CPU cores and from 4 to 8 GB of RAM. os Ubuntu spe-
cifies that a virtual machine must run Ubuntu operating system 64-bit edition.
location requirement NorwayReq specifies that a virtual machine must be de-
ployed in Norway. locations refers to the location NO in the location model
ScalarmLocation (cf. Listing 13.1). The three requirements above are referred to
by the requirement set CoreIntensiveUbuntuNorwayRS in the deployment model

ScalarmDeployment (cf. Listing 6.2).
slo CPUMetricSLO specifies that the metric condition CPUMetricCondition is

an SLO. service level refers to the metric condition CPUMetricCondition in the
metric model ScalarmModel (cf. Listing 8.2).

optimisation requirement MinimisePerformanceDegradationOfExperimentMan-

ager specifies that the metric MeanValueOfResponseTimeOfAllExprimentManagers-

Metric of the component ExperimentManager should be minimised and that this
minimisation has a priority 0.8. metric refers to the metric MeanValueOfResponse-

TimeOfAllExprimentManagersMetric in the metric model ScalarmModel (cf. List-
ing 8.2), while component refers to the internal component ExperimentManager in
the deployment model ScalarmDeployment (cf. Listing 6.2). optimisation require-

ment MinimiseDataFarmingExperimentMakespan specifies a similar optimisation re-
quirement with priority 0.2.

group ScalarmRequirementGroup specifies that the requirements CPUMetricSLO,
MinimisePerformanceDegradationOfExperimentManager, and MinimiseDataFarming-

ExperimentMakespan are logically connected through the AND operator. Note that
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a requirement group also allows a requirement tree to be created. For example,
a top-level requirement group could contain two or more requirement groups lo-
gically connected by an OR operator. Each of the latter requirement groups could
in turn contain single requirements, such as SLOs, logically connected by an AND

operator.
horizontal scale requirement HorizontalScaleSimulationManager specifies

that the component SimulationManager can scale horizontally between 1 and 5
instances. component refers to the internal component SimulationManager in the
deployment model ScalarmDeployment (cf. Listing 6.2).

Listing 7.1: Scalarm requirement model
1 requirement model ScalarmRequirement {
2
3 quantitative hardware CoreIntensive {
4 core: 8..32
5 ram: 4096..8192
6 }
7
8 os Ubuntu {
9 os: ’Ubuntu’ 64os

10 }
11
12 location requirement NorwayReq {
13 locations [ScalarmLocation.NO]
14 }
15
16 slo CPUMetricSLO {
17 service level: ScalarmModel.ScalarmMetric.CPUMetricCondition
18 }
19
20 optimisation requirement

MinimisePerformanceDegradationOfExperimentManager {
21 function: MIN
22 metric: ScalarmModel.ScalarmMetric.

MeanValueOfResponseTimeOfAllExprimentManagersMetric
23 component: ScalarmModel.ScalarmDeployment.ExperimentManager
24 priority: 0.8
25 }
26
27 optimisation requirement MinimiseDataFarmingExperimentMakespan {
28 function: MIN
29 metric: ScalarmModel.ScalarmMetric.MakespanMetric
30 component: ScalarmModel.ScalarmDeployment.ExperimentManager
31 priority: 0.2
32 }
33
34 group ScalarmRequirementGroup {
35 operator: AND
36 requirements [ScalarmRequirement.CPUMetricSLO , ScalarmRequirement.

MinimisePerformanceDegradationOfExperimentManager ,
ScalarmRequirement.MinimiseDataFarmingExperimentMakespan]

37 }
38
39 horizontal scale requirement HorizontalScaleSimulationManager {
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40 component: ScalarmModel.ScalarmDeployment.SimulationManager
41 instances: 1 .. 5
42 }
43 }

8 Metrics and Scalability Rules
The scalability and metric packages of the CAMEL metamodel are based on the
Scalability Rule Language (SRL) [18, 8]. SRL enables the specification of rules
that support complex adaptation scenarios of cross-cloud applications. In partic-
ular, SRL provides mechanisms for specifying cross-cloud behaviour patterns,
metric aggregations, and the scaling actions to be enacted in order to change the
provisioning and deployment of an application. SRL is inspired by the Esper
Processing Language (EPL)17 with respect to the specification of event patterns
with formulas including logic operators and timing. SRL provides mechanisms
for (a) specifying event patterns, (b) specifying scaling actions, and (c) associ-
ating these scaling actions with the corresponding event patterns. Moreover, in
order to identify event patterns, the components of cross-cloud applications must
be monitored. Therefore, SRL provides mechanisms for (d) expressing which
components must be monitored by which metrics, and (e) associating event pat-
terns with monitoring data. In the following, we exemplify the main concepts in
the scalability and metric packages.

Assume that we have to specify scalability rules and metrics for the Scalarm
use case. The SimulationManager scales out when the following conditions are
met: (a) all instances have had an average CPU load beyond 50% for at least
5 min, and (b) concurrently at least one instance has had an average CPU load
beyond 80% for at least 1 min. These conditions are represented by the following
expression, where cpui and cpu j represent the average CPU loads for instance i
and j, respectively:

∀i | cpui ≥ 50 ∧ ∃ j | cpu j ≥ 80

To implement this scenario, we specified a scalability and a metric model
that represent, respectively: (a) the scalability rule along with the events used
to trigger it, and (b) the metrics and conditions that, when evaluated, trigger the
action of the scalability rule.

Listing 8.1 shows the scalability model in textual syntax. non-functional

event CPUAvgMetricNFEAll specifies the violation of a metric condition. metric

17http://esper.codehaus.org/
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condition refers to the metric condition CPUAvgMetricConditionAll in the metric

model ScalarmMetric (cf. Listing 8.2). non-functional event CPUAvgMetricNFEAny

specifies a similar violation of a metric condition.
binary event pattern CPUAvgMetricBEPAnd specifies that the non-functional

events above are logically connected through an AND operator.
horizontal scaling action HorizontalScalingSimulationManager specifies a

scale-out action. vm and internal component refer to the vm CPUIntensiveUbuntu-

Norway and the internal component SimulationManager, respectively, in the de-

ployment model ScalarmDeployment (cf. Listings 6.2 and 6.1).
scalability rule CPUScalabilityRule refers to the binary event pattern and

the horizontal scaling action above, along with the scale requirement Horizon-

talScaleSimulationManager in the requirement model ScalarmRequirement (cf.
Listing 7.1).

Listing 8.1: Scalarm scalability model
1 scalability model ScalarmScalability {
2
3 non-functional event CPUAvgMetricNFEAll {
4 metric condition: ScalarmModel.ScalarmMetric.

CPUAvgMetricConditionAll
5 violation
6 }
7
8 non-functional event CPUAvgMetricNFEAny {
9 metric condition: ScalarmModel.ScalarmMetric.

CPUAvgMetricConditionAny
10 violation
11 }
12
13 binary event pattern CPUAvgMetricBEPAnd {
14 left event: ScalarmModel.ScalarmScalability.CPUAvgMetricNFEAll
15 right event: ScalarmModel.ScalarmScalability.CPUAvgMetricNFEAny
16 operator: AND
17 }
18
19 horizontal scaling action HorizontalScalingSimulationManager {
20 type: SCALE_OUT
21 vm: ScalarmModel.ScalarmDeployment.CPUIntensiveUbuntuNorway
22 internal component: ScalarmModel.ScalarmDeployment.

SimulationManager
23 }
24
25 scalability rule CPUScalabilityRule {
26 event: ScalarmModel.ScalarmScalability.CPUAvgMetricBEPAnd
27 actions [ScalarmModel.ScalarmScalability.

HorizontalScalingSimulationManager]
28 scale requirements [ScalarmRequirement.

HorizontalScaleSimulationManager]
29 }
30 }
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Listing 8.2 shows the metric model in textual syntax. raw metric CPUMetric,
along with the elements referred by it, specify a raw (sensor) metric meas-
uring CPU load. composite metric CPUAverage, along with the elements re-
ferred by it, specify an average CPU load metric. composite metric context

CPUAvgMetricContextAll and composite metric context CPUAvgMetricContextAny

specify that the average CPU load metric is instantiated in two contexts, one with
a window of five minutes and one with a window of one minute, respectively.
The aggregated composite metrics are instantiated as metric instances twice per
virtual machine, and once per metric context.

Listing 8.2: Scalarm metric model
1 metric model ScalarmMetric {
2
3 window Win5Min {
4 window type: SLIDING
5 size type: TIME_ONLY
6 time size: 5
7 unit: ScalarmModel.ScalarmUnit.minutes
8 }
9

10 window Win1Min {
11 window type: SLIDING
12 size type: TIME_ONLY
13 time size: 1
14 unit: ScalarmModel.ScalarmUnit.minutes
15 }
16
17 schedule Schedule1Min {
18 type: FIXED_RATE
19 interval: 1
20 unit: ScalarmModel.ScalarmUnit.minutes
21 }
22
23 schedule Schedule1Sec {
24 type: FIXED_RATE
25 interval: 1
26 unit: ScalarmModel.ScalarmUnit.seconds
27 }
28
29 sensor CPUSensor {
30 configuration: ’cpu_usage;de.uniulm.omi.cloudiator.visor.sensors.

CpuUsageSensor ’
31 push
32 }
33
34 property CPUProperty {
35 type: MEASURABLE
36 sensors [ScalarmMetric.CPUSensor]
37 }
38
39 raw metric CPUMetric {
40 value direction: 0
41 layer: IaaS
42 property: ScalarmModel.ScalarmMetric.CPUProperty
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43 unit: ScalarmModel.ScalarmUnit.CPUUnit
44 value type: ScalarmModel.ScalarmType.Range0_100
45 }
46
47 raw metric context CPURawMetricContext {
48 metric: ScalarmModel.ScalarmMetric.CPUMetric
49 sensor: ScalarmMetric.CPUSensor
50 component: ScalarmModel.ScalarmDeployment.SimulationManager
51 schedule: ScalarmModel.ScalarmMetric.Schedule1Sec
52 quantifier: ALL
53 }
54
55 raw metric context CPUMetricConditionContext {
56 metric: ScalarmModel.ScalarmMetric.CPUMetric
57 sensor: ScalarmMetric.CPUSensor
58 component: ScalarmModel.ScalarmDeployment.SimulationManager
59 quantifier: ANY
60 }
61
62 composite metric CPUAverage {
63 description: "Average of the CPU"
64 value direction: 1
65 layer: PaaS
66 property: ScalarmModel.ScalarmMetric.CPUProperty
67 unit: ScalarmModel.ScalarmUnit.CPUUnit
68
69 metric formula FormulaAverage {
70 function arity: UNARY
71 function pattern: MAP
72 MEAN( ScalarmModel.ScalarmMetric.CPUMetric )
73 }
74 }
75
76 composite metric context CPUAvgMetricContextAll {
77 metric: ScalarmModel.ScalarmMetric.CPUAverage
78 component: ScalarmModel.ScalarmDeployment.SimulationManager
79 window: ScalarmModel.ScalarmMetric.Win5Min
80 schedule: ScalarmModel.ScalarmMetric.Schedule1Min
81 composing metric contexts [ScalarmModel.ScalarmMetric.

CPURawMetricContext]
82 quantifier: ALL
83 }
84
85 composite metric context CPUAvgMetricContextAny {
86 metric: ScalarmModel.ScalarmMetric.CPUAverage
87 component: ScalarmModel.ScalarmDeployment.SimulationManager
88 window: ScalarmModel.ScalarmMetric.Win1Min
89 schedule: ScalarmModel.ScalarmMetric.Schedule1Min
90 composing metric contexts [ScalarmModel.ScalarmMetric.

CPURawMetricContext]
91 quantifier: ANY
92 }
93
94 metric condition CPUMetricCondition {
95 context: ScalarmModel.ScalarmMetric.CPUMetricConditionContext
96 threshold: 80.0
97 comparison operator: >
98 }
99
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100 metric condition CPUAvgMetricConditionAll {
101 context: ScalarmModel.ScalarmMetric.CPUAvgMetricContextAll
102 threshold: 50.0
103 comparison operator: >
104 }
105
106 metric condition CPUAvgMetricConditionAny {
107 context: ScalarmModel.ScalarmMetric.CPUAvgMetricContextAny
108 threshold: 80.0
109 comparison operator: >
110 }
111 }

8.1 Interplay with Executionware
In order to enact the scalability rules, the Executionware provides a monitoring
and adaptation engine for cross-cloud applications. In PaaSage, this monitoring
and adaptation engine is Axe [9]. In particular, the Executionware configures
the monitoring probes based on the specified metrics and evaluates the specified
scalability rules. If a metric condition is violated, the Executionware enacts the
specified scaling action (e.g., scale-out), which may include the provisioning of
vm instances, the deployment of component instances, and the wiring of these
(see Section 6.1). Life-cycle handlers attached to the specified communications
can wire existing component instances by reconfiguring them. The interested
reader may refer to [9] for a detailed description of how the Executionware en-
acts scaling actions.

9 Organisations
The organisation package of the CAMEL metamodel is based on the organisa-
tion subset of CERIF [17]. CERIF is an EU standard18 for research information.
In particular, the organisation package of the CAMEL reuses the concepts from
CERIF for specifying organisations, users, and roles. In the following, we ex-
emplify the main concepts in the organisation package.

Assume that we have to specify the organisation model for the Scalarm use
case. Listing 9.1 shows this specification in textual syntax.

organisation AGH specifies the organisation AGH (Akademia Górniczo-Hut-
nicza, i.e., AGH University of Science and Technology), while user MichalOrze-

chowski specifies the user Michal Orzechowski belonging to the organisation
AGH and owning the application Scalarm (cf. Listing 5.1).

18http://cordis.europa.eu/cerif/
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role devop specifies the role development and operations (devop), while role

assignment MichalOrzechowskiDevop specifies the assignment of the role devop to
the user Michal Orzechowski, which is valid from 1 March 2016 to 28 February
2017.

Listing 9.1: Scalarm organisation model
1 organisation model AGHOrganisation {
2
3 organisation AGH {
4 www: ’http://www.agh.edu.pl/en/’
5 email: ’info@agh.edu.pl’
6 }
7
8 user MichalOrzechowski {
9 first name: Michal

10 last name: Orzechowski
11 email: ’morzech@agh.edu.pl’
12 password: ’************’
13 }
14
15 role devop
16
17 role assignment MichalOrzechowskiDevop {
18 start: 2016-03-01
19 end: 2017-02-28
20 assigned on: 2016-02-29
21 user: AGHOrganisation.morzech
22 role: ScalarmModel.AGHOrganisation.devop
23 }
24 }

10 Providers
The provider package of the CAMEL metamodel is based on Saloon [30, 31, 32].
Saloon is a tool-supported DSL for specifying the features of cloud providers
and matching them with requirements by leveraging feature models [3] and on-
tologies [16]. In the following, we exemplify the main concepts in the provider
package.

Assume that we have to specify the provider model for the Scalarm use case.
Listing 10.1 shows an excerpt of the provider model for a SINTEF private cloud
specified using the CAMEL textual syntax.

root feature SINTEF is the root feature and specifies the attributes and sub-
features characterising SINTEF’s private cloud. attribute DeliveryModel spe-
cifies that SINTEF provides a private cloud. attribute ServiceModel specifies
that SINTEF provides a IaaS. attribute Availability specifies that the guaran-
teed availability of SINTEF’s private cloud is 95%. attribute Driver specifies
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that the provider uses an OpenStack Nova API. attribute EndPoint specifies the
endpoint of the SINTEF’s OpenStack Nova API.

feature VM is a sub-feature and specifies the attributes characterising the vir-
tual machine flavours provided by SINTEF’s private cloud, such as type (attri-
bute VMType), operating system (attribute VMOS), size of RAM (attribute VM-

Memory), size of storage (attribute VMStorage), and number of CPU cores (attri-
bute VMCores). Each attribute has a value type, and a unit type. For instance,
VMMemory has MemoryList, a list of integer values (256, 512, 2048, etc.), as value
type, and MEGABYTES as unit type (cf. Listings 15.1 and 14.1). feature cardinality

specifies that the feature has a cardinality between 1 and 8.
constraints specifies the constraints characterising SINTEF’s private cloud.

implies M1LARGEMapping is an intra-feature constraint and specifies the mapping
between the assigned resources and the virtual machine flavours provided by
SINTEF’s private cloud. For instance, the first attribute constraint specifies
that the size of RAM of the M1.LARGE virtual machine flavour is 8192 (mega-
bytes).

Listing 10.1: SINTEF provider model (excerpt)
1 provider model SINTEFProvider {
2
3 root feature SINTEF {
4
5 attributes {
6
7 attribute DeliveryModel {
8 value: string value ’Private’
9 value type: ScalarmModel.SINTEFType.StringValueType

10 }
11
12 attribute ServiceModel {
13 value: string value ’IaaS’
14 value type: ScalarmModel.SINTEFType.StringValueType
15 }
16
17 attribute Availability {
18 unit type: PERCENTAGE
19 value: string value ’95’
20 value type: ScalarmModel.SINTEFType.StringValueType
21 }
22
23 attribute Driver {
24 value: string value ’openstack -nova’
25 value type: ScalarmModel.SINTEFType.StringValueType
26 }
27
28 attribute EndPoint {
29 value: string value ’https://minicloud.modelbased.net’
30 value type: ScalarmModel.SINTEFType.StringValueType
31 }
32 }
33

CAMEL Documentation Page 32 of 56



34 sub-features {
35
36 feature VM {
37
38 attributes {
39 attribute VMType {value type: ScalarmModel.SINTEFType.

VMTypeEnum}
40 attribute VMOS {value type: ScalarmModel.SINTEFType.VMOSEnum

}
41 attribute VMMemory {unit type: MEGABYTES value type:

ScalarmModel.SINTEFType.MemoryList}
42 attribute VMStorage {unit type: GIGABYTES value type:

ScalarmModel.SINTEFType.StorageList}
43 attribute VMCores {value type: ScalarmModel.SINTEFType.

CoresList}
44 }
45
46 feature cardinality {cardinality: 1 .. 8}
47 }
48 ...
49 }
50
51 feature cardinality {cardinality: 1 .. 1}
52 }
53
54 constraints {
55 ...
56 implies M1LARGEMapping {
57
58 from: ScalarmModel.SINTEFProvider.SINTEF.VM
59 to: ScalarmModel.SINTEFProvider.SINTEF.VM
60
61 attribute constraints {
62
63 attribute constraint {
64 from: ScalarmModel.SINTEFProvider.SINTEF.VM.VMType
65 to: ScalarmModel.SINTEFProvider.SINTEF.VM.VMMemory
66 from value: string value ’M1.LARGE’
67 to value: int value 8192
68 }
69
70 attribute constraint {
71 from: ScalarmModel.SINTEFProvider.SINTEF.VM.VMType
72 to: ScalarmModel.SINTEFProvider.SINTEF.VM.VMCores
73 from value: string value ’M1.LARGE’
74 to value: int value 4
75 }
76
77 attribute constraint {
78 from: ScalarmModel.SINTEFProvider.SINTEF.VM.VMType
79 to: ScalarmModel.SINTEFProvider.SINTEF.VM.VMStorage
80 from value: string value ’M1.LARGE’
81 to value: int value 80
82 }
83 }
84 }
85 ...
86 }
87 }

CAMEL Documentation Page 33 of 56



11 Security
The security package of the CAMEL metamodel is not based on existing DSLs
and has been developed to enable the specification of security aspects of cross-
cloud applications. It enables the specification of high-level and low-level se-
curity requirements and capabilities that can be exploited for filtering providers
as well as adapting cross-cloud applications. In the following, we exemplify the
main concepts in the security package.

Assume that we have to specify the security model for the Scalarm use case.
Listing 9.1 shows this specification in textual syntax.

domain IAM specifies the domain of Identity & Access Management (IAM).
domain IAM_CLCPM and IAM_UAR specify two sub-domains of IAM, namely Creden-
tial Life Cycle/Provision Management (CLCPM) and User Access Revocation
(UAR), respectively.

property IdentityAssurance specifies an abstract property of identity assur-
ance associated with the domain IAM. security control IAM_02 specifies a se-
curity control associated with the sub-domain (CLCPM) and the property Identi-

tyAssurance. Similarly, security control IAM_11 specifies a security control as-
sociated with the sub-domain (UAR) and the property IdentityAssurance. Note
that these security controls are part of the set of security controls identified by
the Cloud Security Alliance (CSA).19

security capability SecCap specifies a security capability associated with
the security controls IAM_02 and IAM_11. Finally, the organisation model Amazon-

Ext refers to the security capability SecCap, which specifies that the Amazon
provider supports this security capability.

Listing 11.1: Scalarm security model
1 security model ScalarmSecurity {
2
3 domain IAM {
4 name: "Identity & Access Management"
5 sub-domains [ScalarmSecurity.IAM_CLCPM , ScalarmSecurity.IAM_CLCPM]
6 }
7
8 domain IAM_CLCPM {
9 name: "Credential Life Cycle/Provision Management"

10 }
11
12 domain IAM_UAR {
13 name: "User Access Revocation"
14 }

19https://cloudsecurityalliance.org/
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15
16 property IdentityAssurance {
17 description: "The ability of a relying party to determine , with

some level of certainty , that a claim to a particular identity made
by some entity can be trusted to actually be the claimant ’s true,

accurate and correct identity."
18 type: ABSTRACT
19 domain: ScalarmSecurity.IAM
20 }
21
22 security control IAM_02 {
23 specification: "User access policies and procedures shall be

established , and supporting business processes and technical
measures implemented , for ensuring appropriate identity,
entitlement , and access management for all internal corporate and
customer (tenant) users with access to data and organisationally -
owned or managed (physical and virtual) application interfaces and
infrastructure network and systems components."

24 domain: ScalarmSecurity.IAM
25 sub-domain: ScalarmSecurity.IAM_CLCPM
26 security properties [ScalarmModel.ScalarmSecurity.

IdentityAssurance]
27 }
28
29 security control IAM_11 {
30 specification: "Timely de-provisioning (revocation or modification

) of user access to data and organisationally -owned or managed (
physical and virtual) applications , infrastructure systems, and
network components , shall be implemented as per established
policies and procedures and based on user’s change in status (e.g.,
termination of employment or other business relationship , job

change or transfer). Upon request, provider shall inform customer (
tenant) of these changes, especially if customer (tenant) data is
used as part the service and/or customer (tenant) has some shared
responsibility over implementation of control."

31 domain: ScalarmSecurity.IAM
32 sub-domain: ScalarmSecurity.IAM_UAR
33 security properties [ScalarmModel.ScalarmSecurity.

IdentityAssurance]
34 }
35
36 security capability SecCap {
37 controls [ScalarmSecurity.IAM_02, ScalarmSecurity.IAM_11]
38 }
39 }
40
41 requirement model ScalarmExtendedReqModel {
42
43 security requirement AllIAMsSupported {
44 controls [ScalarmSecurity.IAM_02, ScalarmSecurity.IAM_11]
45 }
46 }
47
48 organisation model AmazonExt {
49
50 provider Amazon {
51 www: ’https://aws.amazon.com/’
52 email: ’contact@amazon.com’
53 PaaS
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54 IaaS
55 security capability [ScalarmModel.ScalarmSecurity.SecCap]
56 }
57 }

12 Execution
The execution package of the CAMEL metamodel is not based on existing DSLs
and has been developed to enable the recording of historical data about the exe-
cution of cross-cloud applications. Historical data, such as metric measurements
and SLO assessments, can be used for auditing purposes as well as for optim-
ising the CAMEL model to better exploit the available cloud infrastructures [20].
In PaaSage, the execution model is automatically manipulated by the PaaSage
platform during the execution phase (see Section 2), and so it should be in the
general case too. In the following, we exemplify the main concepts in the execu-
tion package.

Assume that we have to record the execution of the Scalarm use case. List-
ing 12.1 shows this specification in textual syntax.

vm binding ScalarmVMBinding specifies that the virtual machine instance Core-

IntensiveUbuntuNorwayInst (cf. Listing 6.5) is bound to the execution context
EC1.

raw metric instance CPUMetricInstance specifies that the metric instance
CPUMetricInstance is an instance of the metric CPUMetric and is bound to the vir-
tual machine instance CoreIntensiveUbuntuNorwayInst and the execution context
EC1 (cf. Listing 6.5).

execution context EC1 specifies the current execution context. It refers to
the application being executed, the deployment model of the application, the
requirement group that led to this deployment model, and an indication of the
total cost of application execution along with a reference to the corresponding
monetary unit (cf. Listing 14.1).

vm measurement VM1 specifies the virtual machine measurement for the CPU
metric instance. It refers to the execution context, the metric instance, the virtual
machine instance (cf. Listing 6.5), the measured value (95.0), and the timestamp
of the measurement.

Similar to the vm measurement, the assessment A1 specifies the assessment
for the CPU metric SLO. It comprises the appropriate reference, the indication
that the SLO has been violated, and the timestamp of the assessment.

Listing 12.1: Scalarm execution model
1 metric model ScalarmMetric {
2
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3 vm binding ScalarmVMBinding {
4 execution context: ScalarmExecution.EC1
5 vm instance: ScalarmModel.ScalarmDeployment.

CoreIntensiveUbuntuNorwayInst
6 }
7
8 raw metric instance CPUMetricInstance {
9 metric: ScalarmModel.ScalarmMetric.CPUMetric

10 sensor: ScalarmMetric.CPUSensor
11 binding: ScalarmModel.ScalarmMetric.ScalarmVMBinding
12 }
13 }
14
15 execution model ScalarmExecution {
16
17 execution context EC1 {
18 application: ScalarmModel.ScalarmApplication
19 deployment model: ScalarmModel.ScalarmDeployment
20 requirement group: ScalarmRequirement.ScalarmRequirementGroup
21 total cost: 100.0
22 cost unit: ScalarmModel.ScalarmUnits.Euro
23 }
24
25 vm measurement VM1 {
26 execution context: ScalarmExecution.EC1
27 metric instance: ScalarmMetric.RawCPUMetricInstance
28 vm instance: ScalarmModel.ScalarmDeployment.

CoreIntensiveUbuntuNorwayInst
29 value: 95.0
30 time: 2016-10-31 T 22:50
31 }
32
33 assessment A1 {
34 execution context: ScalarmExecution.EC1
35 measurement: ScalarmExecution.VM1
36 slo: ScalarmRequirement.CPUMetricSLO
37 violated
38 time: 2016-10-31 T 22:50
39 }
40 }

13 Locations
The location package of the CAMEL metamodel is not based on existing DSLs
and has been developed to enable the specification of locations. A location can
be a geographical region (e.g., Europe) or a cloud location (e.g., Amazon EC2
eu-west-1). A geographical region can refer to a parent region, which allows
for the creation of hierarchies of geographical regions (e.g., continent, sub-
continent, and country). Similar to the geographical region, a cloud location
can refer to a parent location. In the following, we exemplify the main concepts
in the location package.
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Assume that we have to specify the locations for the Scalarm use case. List-
ing 13.1 shows this specification in textual syntax.

region EU specifies the region Europe. country NO and country DE specifies
the countries Norway and Germany, respectively. parent regions refers to the
parent region Europe. The location Norway is referred to by the location requi-

rement NorwayReq in the requirement model ScalarmRequirement (cf. Listing 7.1).

Listing 13.1: Scalarm location model
1 location model ScalarmLocation {
2
3 region EU {
4 name: ’Europe’
5 }
6
7 country NO {
8 name: ’Norway’
9 parent regions [ScalarmLocation.EU]

10 }
11
12 country DE {
13 name: ’Germany’
14 parent regions [ScalarmLocation.EU]
15 }
16 }

14 Units
The unit package of the CAMEL metamodel is not based on existing DSLs and
has been developed to enable the specification of units that are adopted by the
following packages: (a) metric, where they are used to define the unit of meas-
urement for a metric, (b) execution, where they are used to define the monetary
unit for the cost of a particular application execution, and (c) the provider, where
they are used to define the unit for a particular feature attribute. In the following,
we exemplify the main concepts in the unit package.

Assume that we have to specify the units of the Scalarm use case. List-
ing 14.1 shows this specification in textual syntax.

The unit model ScalarmUnit encompasses seven units that are referred to by
metrics in the metric model ScalarmMetric (cf. Listing 8.2). The specification of
each unit follows the pattern: <unit_class> <unit_name>: <unit_type>. For in-
stance, monetary unit {Euro: EUROS} specifies a monetary unit named “euros”
and typed EUROS).

Listing 14.1: Scalarm unit model
1 unit model ScalarmUnit {
2 monetary unit {Euro: EUROS}
3 throughput unit {SimulationsPerSecondUnit: TRANSACTIONS_PER_SECOND}
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4 time interval unit {ResponseTimeUnit: MILLISECONDS}
5 time interval unit {ExperimentMakespanInSecondsUnit: SECONDS}
6 transaction unit {NumberOfSimulationsLeftInExperimentUnit:

TRANSACTIONS}
7 dimensionless {AvailabilityUnit: PERCENTAGE}
8 dimensionless {CPUUnit: PERCENTAGE}
9 }

The complete list of available units is a follows:

• core unit, which represents the unit of CPU cores

• monetary unit, which represents a monetary unit (e.g., EUROS)

• request unit, which represents the unit of number requests

• storage unit, which represents the unit of storage (e.g., BYTES)

• throughput unit, which represents the unit of throughput (e.g., REQUESTS-
_PER_SECOND)

• time interval unit, which represents the unit of time interval (e.g., SE-
CONDS)

• transaction unit, which represents the number of transactions

• dimensionless, which represents a unit without dimension (e.g., a unit of
PERCENTAGE is dimensionless)

15 Types
The type package of the CAMEL metamodel is also based on Saloon [30, 31, 32].
It provides the concepts to specify value types and values used across CAMEL
models (e.g., integer, string, or enumeration). In the following, we exemplify the
main concepts in the type package.

Assume that we have to specify the types of the Scalarm use case. List-
ing 15.1 shows this specification in textual syntax.

range Range0_100 specifies an integer range between 0 and 99 (i.e., 100, not
included). It is referred to by the metric CPUMetric (cf. Listing 8.2).

range Range0_1000 specifies an integer range between 1 (i.e., 0, not included)
and 1000. It is referred to by the metric ResponseTimeMetric (cf. Listing 8.2).

range DoubleRange0_100 specifies a double range between 0.0 and 100.0. It
is referred to by the metric AvailabilityMetric (cf. Listing 8.2).
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The other value types, enumerations, and lists in the type model SINTEFType
are referred to by the features in the provider model SINTEFProvider Availability-
Metric (cf. Listing 10.1).

Listing 15.1: Scalarm type model
1 type model ScalarmType {
2
3 range Range0_100 {
4 primitive type: IntType
5 lower limit {int value 0 included}
6 upper limit {int value 100}
7 }
8
9 range Range0_10000 {

10 primitive type: IntType
11 lower limit {int value 0}
12 upper limit {int value 10000 included}
13 }
14
15 range DoubleRange0_100 {
16 primitive type: DoubleType
17 lower limit {double value 0.0 included}
18 upper limit {double value 100.0 included}
19 }
20 }
21
22 type model SINTEFType {
23
24 string value type StringValueType {
25 primitive type: StringType
26 }
27
28 enumeration VMTypeEnum {
29 values [ ’M1.MICRO’ : 0, ..., ’M1.LARGE’ : 4, ..., ’C1.XXLARGE’ :

15 ]
30 }
31
32 enumeration VMOSEnum {
33 values [ ’Fedora 20 server x86_64’ : 0, ’Ubuntu 14.04 LTS Server

x86_64’ : 1, ... ]
34 }
35
36 list StorageList {
37 values [ int value 0, int value 20, int value 40, int value 80,

int value 160 ]
38 }
39
40 list MemoryList {
41 values [ int value 256, int value 512, int value 2048, int value

4096, int value 8192, int value 16384, int value 32768 ]
42 }
43
44 list CoresList {
45 values [ int value 1, int value 2, int value 4, int value 8, int

value 16 ]
46 }
47 }
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16 Java APIs and CDO
As mentioned, CAMEL consists of an Ecore model (cf. Section 5). This en-
ables to specify CAMEL models using the CAMEL Textual Editor as well as to
programmatically manipulate and persist them through Java APIs.

Listing 16.1 shows the creation of a VM of Scalarm (cf. Section 2). The
classes that are instantiated and initialised in the code have been automatically
generated by the EMF generator model based on the deployment package. All
class instances are obtained using the DeploymentFactory object specific for the
deployment package. This object provides a set of methods that are used to make
sure the model objects are appropriately instantiated.

Listing 16.1: A sample VM definition
//create a ML VM
VM coreIntensiveVM = DeploymentFactory.eINSTANCE.createVM();
//First create VM requirement set & add it to the deployment model
VMRequirementSet coreIntensiveReqs = DeploymentFactory.eINSTANCE.

createVMRequirementSet();
mlReqs.setName("CoreIntensiveReqs");
coreIntensiveVM.setVmRequirementSet(coreIntensiveReqs);
sensAppDeploymentModel.getVmRequirementSets().add(coreIntensiveReqs);
//Create a quantitative hardware requirement to include it in the

requirement set
QuantitativeHardwareRequirement coreIntensiveRequirment =

RequirementFactory.eINSTANCE.createQuantitativeHardwareRequirement
();

coreIntensiveRequirment.setName("CoreIntensive");
coreIntensiveRequirment.setMaxCores(32);
coreIntensiveRequirment.setMinCores(8);
coreIntensiveRequirment.setMaxRAM(8192);
coreIntensiveRequirment.setMinRAM(4096);
rm.getRequirements().add(coreIntensiveRequirment);
coreIntensiveReqs.setQuantitativeHardwareRequirement(

coreIntensiveRequirment);
//Create a LOcation requirement imposing that the VM should be located

in Scotland
LocationRequirement germanyRequirement = RequirementFactory.eINSTANCE.

createLocationRequirement();
germanyRequirement.setName("GermanyReq");
germanyRequirement.getLocations().add(ScalarmLocationModel.germany);
rm.getRequirements().add(germanyRequirement);
coreIntensiveReqs.setLocationRequirement(germanyRequirement);
//Fix other details of the VM including its name and provided host
coreIntensiveVM.setName("CoreIntensiveVM");

ProvidedHost vmMLProv = DeploymentFactory.eINSTANCE.createProvidedHost
();

vmMLProv.setName("VMMLProv");

ml.getProvidedHosts().add(vmMLProv);
//Finally add the VM to the deployment model
scalarmDeploymentModel.getVms().add(ml);
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Listing 16.2 shows the specification of Scalarm’s ExperimentManager Internal-
Component. This internal component has an associated Configuration, which
specifies the corresponding life cycle control scripts (e.g., download and install
commands). It also specifies communications with other internal components by
creating corresponding RequiredCommunication, ProvidedCommunication entities
and a dedicated type of host RequiredHost that the ExperimentManager requires.

Listing 16.2: A sample InternalComponent definition
//create a Scalarm InternalComponent give it a name
InternalComponent experimentManagerIc = DeploymentFactory.eINSTANCE.

createInternalComponent();

//Associate it with a particular configuration
Configuration experimentManagerCompResourceConf = DeploymentFactory.

eINSTANCE.createConfiguration();
experimentManagerCompResourceConf.setDownloadCommand("wget https://

github.com/kliput/scalarm_service_scripts/archive/paasage.tar.gz &&
 sudo apt-get update && sudo apt-get install -y groovy ant && tar -
zxvf paasage.tar.gz && cd scalarm_service_scripts -paasage");

experimentManagerCompResourceConf.setInstallCommand("cd 
scalarm_service_scripts -paasage && ./experiment_manager_install.sh"
);

experimentManagerCompResourceConf.setStartCommand("cd 
scalarm_service_scripts -paasage && ./experiment_manager_start.sh");

experimentManagerIc.getConfigurations().add(
experimentManagerCompResourceConf);

//Create a provided communication element on port 443
ProvidedCommunication experimentManagerProvidedCommunication =

DeploymentFactory.eINSTANCE.createProvidedCommunication();
experimentManagerProvidedCommunication.setName("ExperimentManager");
experimentManagerProvidedCommunication.setPortNumber(443);
experimentManagerIc.getProvidedCommunications().add(

experimentManagerProvidedCommunication);

//Create a required communication with Scalarm StorageManager
component

RequiredCommunication experimentManagerReqStorageCommunication =
DeploymentFactory.eINSTANCE.createRequiredCommunication();

experimentManagerReqStorageCommunication.setIsMandatory(true);
experimentManagerReqStorageCommunication.setName("

ExperimentManager_consumes_SotrageManager");
experimentManagerReqStorageCommunication.setPortNumber(20001);
experimentManagerIc.getRequiredCommunications().add(

experimentManagerReqStorageCommunication);

//Create a required host element
RequiredHost coreIntensiveUbuntuGermanyHostReq = DeploymentFactory.

eINSTANCE.createRequiredHost();
coreIntensiveUbuntuGermanyHostReq.setName("

coreIntensiveUbuntuGermanyHostReq");
experimentManagerIc.setRequiredHost(coreIntensiveUbuntuGermanyHostReq)

;

//Finally add the component to the deployment model
scalarmDeploymentModel.getInternalComponents().add(experimentManagerIc
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);

Listing 16.3 shows the creation of a Communication binding between the Scal-
arm’s ExperimentManager and the Scalarm’s StorageManager.

Listing 16.3: A sample Communication definition
//Create communication by also specifying its name and the provided

and required communications
Communication experimentManagerToStorageManager = DeploymentFactory.

eINSTANCE.createCommunication();
experimentManagerToStorageManager.setName("

experimentManagerToStorageManager");
experimentManagerToStorageManager.setProvidedCommunication(

storageManagerProvidedCommunicationMongodNnginx);
experimentManagerToStorageManager.setRequiredCommunication(

experimentManagerReqStorageCommunication);

//Add communication to deployment model
scalarmDeploymentModel.getCommunications().add(

experimentManagerToStorageManager);

Listing 16.4 shows the specification of a Hosting binding between the Experi-
mentManager InternalComponent and the VM of coreIntensiveUbuntuGermanyHost
type.

Listing 16.4: A sample Hosting definition
//Create hosting, specify its name and the required and provided hosts
Hosting experimentManagerToCoreIntensiveUbuntuGermany =

DeploymentFactory.eINSTANCE.createHosting();
experimentManagerToCoreIntensiveUbuntuGermany.setName("

ExperimentManagerToCoreIntensiveUbuntuGermany");
experimentManagerToCoreIntensiveUbuntuGermany.setProvidedHost(

coreIntensiveUbuntuGermanyHost);
experimentManagerToCoreIntensiveUbuntuGermany.setRequiredHost(

coreIntensiveUbuntuGermanyHostReq);

//Add hosting to the deployment model
scalarmDeploymentModel.getHostings().add(

experimentManagerToCoreIntensiveUbuntuGermany);

Listing 16.5 shows the process of saving a deployment model in a CDO re-
pository. As mentioned, CDO uses a set of APIs that are designed after the JDBC
APIs. In order to save a model, we first need to create a session and obtain a
transaction over it. This example adopts a local database that is accessed using a
TCP connector from the Net4j framework20, a partner project used within CDO.
Once the transaction is obtained, the deployment model refers to the CDOResource

responsible for its persistence, and the transaction is committed.

Listing 16.5: Saving a deployment model in a CDO repository

20https://www.eclipse.org/modeling/emf/?project=net4j
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//initialize and activate a container
final IManagedContainer container = ContainerUtil.createContainer();
Net4jUtil.prepareContainer(container);
TCPUtil.prepareContainer(container);
// CDONet4jUtil.prepareContainer(container);
container.activate();

// create a Net4j TCP connector
final IConnector connector = (IConnector) TCPUtil.getConnector(

container , "localhost:2036");

// create the session configuration
CDONet4jSessionConfiguration config = CDONet4jUtil.

createNet4jSessionConfiguration();
config.setConnector(connector);
config.setRepositoryName("repo1");

// create the actual session with the repository
CDONet4jSession cdoSession = config.openNet4jSession();

// obtain a transaction object
CDOTransaction transaction = cdoSession.openTransaction();

// create a CDO resource object
CDOResource resource = transaction.getOrCreateResource("/

scalarmResource1");
EObject camelModel = ScalarmModel.createScalarmModel();

// associate the deployment model to the resource
resource.getContents().add(camelModel);

// commit the transaction to persist the model
transaction.commit();

Listing 16.6 shows the process of loading and modifying a deployment model.
In this example, the host VM for the ExperimentManager is changed. We change it
by setting the ProvidedHost of the Hosting to point to a virtual machine definition
suitable for single CPU intensive tasks (assuming it is initially one suited for
multi-core processing).

Listing 16.6: Loading and modifying a deployment model in a CDO repository
// open a new transaction
CDOTransaction transaction = cdoSession.openTransaction();

// load the existing resource of SensApp and get the top-most model
which is a deployment one

CDOResource resource = transaction.getResource("/scalarmResource1");
assertTrue(resource.getContents().get(0) instanceof DeploymentModel);
DeploymentModel model = (DeploymentModel) resource.getContents().get

(0);

// get provided host for the CPU intensive virtual machine (which we
want to change to)

ProvidedHost CPUIntensiveProvidedHost = null;
for(VM vm: model.getVMs()){
if (vm.getName().equals("CPUIntensiveUbuntuGermany")){
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CPUIntensiveProvidedHost = vm.getProvidedHost();
break;

}
}

// find the current hosting in the deployment model
Hosting currentHosting = null;
for (Hosting h2: model.getHostings()){
if (h2.getName().equals("

ExperimentManagerToCoreIntensiveUbuntuGermany")){
currentHosting = h2;
break;

}
}

// modify hosting in the deployment model and replace the current
provided host (which is presumably "CoreIntensiveUbuntuGermany")

currentHosting.setName("ExperimentManagerToCPUIntensiveUbuntuGermany")
;

currentHosting.setProvidedHost(CPUIntensiveProvidedHost);

// commit the transaction to persist the updated model
transaction.commit();

The example above show the Java code for programmatically saving, load-
ing, and modifying part of a deployment model in a CDO repository. The Java
code for programmatically saving, loading, and modifying models from other
packages of the CAMEL metamodel is analogous. The full version of the Java
code of the Scalarm example is available for reference in the Git repository at
OW2.21

17 Related Work
In the following, we compare CAMEL with related work. We distinguish between
tools (e.g., DevOps and cloud orchestration tools) to automate the deployment
of cloud applications and languages to model cloud aspects. For the latter cat-
egory, we define six comparison criteria and evaluate the languages according to
these criteria. This comparison will validate our claim that CAMEL advances
the state-of-the-art in modelling and execution of cloud applications.

21https://github.com/groundnuty/scalarm-paasage-camel/tree/master/
model_in_java/src/main/java/eu/paasage/camel/agh
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17.1 Tools
In the cloud community, libraries such as jclouds22 or DeltaCloud23 provide gen-
eric APIs abstracting over the heterogeneous APIs of IaaS providers. These lib-
raries reduce the cost and effort of deploying cloud applications and can be used
by the platforms supporting CAMEL. For instance, the PaaSage platform uses
jclouds.

DevOps tools such as Puppet24 or Chef25 rely on scripting languages to spe-
cify the deployment of cloud applications. These tools increase the automation
in deploying cloud applications. However, the deployment scripts cannot be
treated as deployment models, which introduces a mismatch between the de-
ployment topology of cloud applications and the technique used to represent
them.

Cloud orchestration tools such as Cloudify26 or Apache Brooklyn27 rely on
the TOSCA [29] (see below) to specify the topologies of cloud applications
along with the processes for their orchestration. These tools facilitate the provi-
sioning, deployment, and monitoring of cloud applications across multiple cloud
infrastructures [2]. However, TOSCA does not provide an instance model and
hence does not support models@run-time, which makes these tools unsuitable
for reasoning on the models and hence enabling self-adaptive cross-cloud ap-
plications.

17.2 Languages
In the research community, within the Reservoir28 EU project, Galán et al. [14]
proposed a service specification language for cloud computing platforms, which
extends the DMTF’s Open Virtualization Format (OVF) standard to address the
specific requirements of these environments.

Within the 4CaaSt29 EU project, Nguyen et al. [24] proposed a language to
specify Blueprint Templates—a uniform abstract description for cloud service
offerings that may cross different cloud computing layers, i.e., infrastructure and
platform.

22http://www.jclouds.org
23http://deltacloud.apache.org/
24https://puppetlabs.com/
25http://www.opscode.com/chef/
26http://getcloudify.org/
27https://brooklyn.apache.org/
28http://www.reservoir-fp7.eu/
29http://www.4caast.eu
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The MODAClouds project30 provides a family of DSLs collectively called
MODACloudML. MODACloudML relies on the following three layers of ab-
straction: (i) the cloud-enabled computation independent model (CCIM) to de-
scribe an application and its data, (ii) the CPIM (as in PaaSage) to describe
concerns of cloud applications in a cloud-agnostic way, and (iii) the CPSM (as
in PaaSage) to describe concerns of cloud applications in a cloud-specific way,
so that they can be provisioned and deployed on specific clouds.

The ARTIST project31 provides the Cloud Application Modelling Language
(CAML). CAML consists of an internal DSL [13] realised as a UML library
along with UML profiles [4] rather than an external DSL such as CAMEL. The
main rationale behind the latter stems from the goal of the ARTIST project to
support the migration of existing applications to the cloud, whereby UML mod-
els are reverse-engineered and tailored to a selected cloud environment.

The ARCADIA project32 provides a methodology and a framework to sup-
port the development of highly-distributed applications (HDAs) that are recon-
figurable by design. The ARCADIA Framework [34] relies on unikernel tech-
nology in order to bundle microservices, and leverages on an extensible context
model throughout the entire life cycle of HDAs. Similar to CAMEL, the AR-
CADIA Context Model [15] has multiple facets, such as the component model,
the service graph model, the service deployment model, and the service run-time
model.

In the standards community, the Topology and Orchestration Specification
for Cloud Applications (TOSCA) [29] is a specification developed by the OASIS
consortium, which provides a language for specifying the components compris-
ing the topology of cloud applications along with the processes for their orches-
tration.

17.3 Comparison
In the following, we define six comparison criteria and evaluate the aforemen-
tioned languages according to these criteria. These criteria were selected to eval-
uate the usefulness, usability, and self-adaptation support of the lanugages. In
particular, the abstract syntax and aspect coverage, delivery model support, and
models@run-time support reflect the usefulness of the language; the concrete
syntax and integration level reflect the usability; and models@run-time support
also reflects the self-adaptation support.

30http://www.modaclouds.eu/
31http://www.artist-project.eu/
32http://www.arcadia-framework.eu
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Abstract syntax. The abstract syntax of a language describes the set of con-
cepts, their attributes, and their relations, as well as the rules for combining
these concepts to specify valid statements that conform to this abstract syntax.
The abstract syntax can be defined using formalisms that provide different cap-
abilities. For instance, XML Schema are more suitable for tree-based structures,
while MOF-based formalisms are more suitable for graph-based structures and
offer better tool support and better integration with constraint languages such as
OCL. This criterion is used to identify which formalisms are used by a language.
The values for this criterion are “XML Schema” and “MOF”.33

Concrete syntax. The concrete syntax of a language describes the textual or
graphical notation that renders the concepts of the abstract syntax, their attrib-
utes, and their relations. The concrete syntax can be defined using notations that
provide a trade-off between the intuitiveness and the effectiveness of the syntax.
For instance, a textual syntax may be less intuitive but more effective than a cor-
responding graphical syntax. This criterion is used to identify which notations
are supported by a language. The values for this criterion can be “XML”, “txt”
(textual), and “gra” (graphical).

Aspect coverage. A language may cover multiple aspects within the same do-
main or across multiple domains. For instance, in CAMEL we specify the life
cycle of cross-cloud applications using 11 aspects, namely deployment, require-
ment, location, metric, scalability, provider, organisation, security, execution,
unit, and type. This criterion reflects how many of these aspects are covered by
a language. The values for this criterion can be “low” if it covers at most three
aspects, “medium” if it covers at most six aspects, and “high” otherwise.

Integration level. A language that covers multiple aspects may provide dif-
ferent levels of integration across these aspects, especially when these aspects
include similar or equivalent concepts. The integration solution has to: (a) join
equivalent concepts and separate similar concepts into respective sub-concepts;
(b) homogenise the remaining concepts so that they are defined at the same level
of granularity; (c) enforce a uniform formalism and notation for the abstract and
concrete syntaxes; and (d) enforce the consistency, correctness, and integrity of
the models. Each of these steps is a precondition to the following step and re-
quires an increasing amount of effort. This criterion reflects how many of these
steps have been adopted to integrate the sub-languages. The values for this cri-
terion can be “low” if the sub-languages were integrated following only step
(a), “medium” if they were integrated following steps (a) and (b), “high” if they

33Abstract syntaxes defined in Ecore fall into this category.

CAMEL Documentation Page 48 of 56



were integrated following all steps, and “N/A” if they were not integrated. In
the last case, each sub-language covers one aspect and is independent from the
other sub-languages. This independence leads to the following disadvantages:
(a) it raises the complexity of the language, since each sub-language has its own
abstract and concrete syntax; (b) it steepens the learning curve and increases the
modelling effort for the same reason; (d) it leads to the duplication of model-
ling for similar or equivalent concepts; (e) it leads to the manual validation of
cross-aspect dependencies.

Delivery model support. A cross-cloud application may exploit any of the
cloud delivery models, namely IaaS and PaaS. A language for specifying the life
cycle of cross-cloud applications should support concepts for each of these cloud
delivery models. This criterion reflects how many of these delivery models are
supported by a language. The values for this criterion can be “IaaS” and “PaaS”.

Models@run-time support. Models@run-time [5] provides an abstract rep-
resentation of the underlying running system, whereby a modification to the
model is enacted on-demand in the system, and a change in the system is auto-
matically reflected in the model. Models@run-time can be implemented using
the type-instance pattern [1], which facilitates reusability and abstraction. For
instance, we implemented the type-instance pattern in two aspects, namely de-
ployment and metric. In the case of deployment, this allows to automatically
adapt the component- and virtual machine instances in the deployment model
based on scalability rules (e.g., scale out a Scalarm service along with the under-
lying virtual machine). In the case of monitoring, this allows to automatically
populate the metric model with metric instances (e.g., CPU load measurements
of the virtual machine hosting the Scalarm service). This criterion reflects how
many of these aspects implement the type-instance pattern. The values for this
criterion can be “deployment” and “metric”.

17.4 Analysis
Table 1 shows the comparison of the languages based on the criteria above.
CAMEL scores best in all criteria apart from the last one.

Compared to CAMEL, the Reservoir OVF Extension and the 4CaaSt Blue-
print Templates do not cover the multiple aspects necessary for modelling and
especially executing cross-cloud applications.

MODACloudML and CAMEL achieve similar goals, but with different ap-
proaches: MODACloudML is a family of loosely coupled DSLs, while CAMEL
is a standalone language. CAMEL has the advantage of providing a uniform
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Language Abstract Concrete Aspect Integration Delivery Model Models@run-time
Syntax Syntax Coverage Level Support Support

Reservoir OVF Extension XML Schema XML low N/A IaaS N/A
4CaaSt Blueprint Template XML Schema XML low N/A IaaS, PaaS N/A

ModaCloudML MOF XML, gra, txt medium low IaaS, PaaS deployment
CAML MOF gra medium medium IaaS N/A

ARCADIA Context Model XML Schema XML high medium IaaS deployment
TOSCA XML Schema XML, txt medium medium IaaS, PaaS N/A
CAMEL MOF XML, gra, txt high high IaaS deployment, metric

Table 1: The cloud language comparison table

abstract and concrete syntax, which resulted from a process of coupling and ho-
mogenising multiple DSLs [25]. However, ModaCloudML supports both IaaS
and PaaS while CAMEL only supports the former. CAMEL will be extended to
include support PaaS in future work.

CAML achieves a subset of the goals of CAMEL. CAML does not support
aspects of execution, while CAMEL provides full support for models@run-time.

The ARCADIA Context Model is less expressive than CAMEL with respect
to specifying complex conditions on composite metrics. However, the ARCA-
DIA Context Model is more expressive than CAMEL with respect to specify-
ing adaptation actions, and provides concepts for specifying unikernel and mi-
croservices aspects. CAMEL could possibly be extended to support these as-
pects.

TOSCA supports the specification of types and templates, but not instances,
in deployment models. CAMEL, in contrast, supports the specification of types,
templates, and instances. Note that CAMEL provides built-in types such as vm,
internal component, communication, and hosting, while TOSCA offers similar types
in a library of reusable types and allows to define arbitrary types. In its current
form, TOSCA can only be used at design-time, while CAMEL can be used at
both design-time and run-time.

As part of the joint standardisation effort of MODAClouds, PaaSage, and
ARCADIA, SINTEF presented the models@run-time approach to the TOSCA
technical committee (TC) and proposed to form an ad hoc group to investigate
how TOSCA could be extended to support this approach. The TC welcomed
this proposal and approved the formation of the Instance Model Ad Hoc group
in October 2015. The group is currently co-led by Alessandro Rossini from
SINTEF and Derek Palma from Vnomic. The work performed in this group
will guarantee that the contribution of CAMEL will partly be integrated into the
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standard.

18 Conclusion and Future Work
CAMEL allows to specify multiple aspects of cross-cloud applications, such
as provisioning, deployment, service level, monitoring, scalability, providers,
organisations, users, roles, security, and execution. It supports models@run-
time, which enables reasoning on CAMEL models and hence managing self-
adaptive cross-cloud applications.

In this document, we described the design and implementation of CAMEL.
Moreover, we provided a real-world running example to illustrate how to specify
models in a concrete textual syntax and how to programmatically manipulate and
persist them through Java APIs.

In the future, we will continue to develop CAMEL iteratively. In particular,
we will adapt and extend the capabilities of CAMEL to the changing require-
ments. In this respect, the developers will provide feedback on whether the
concepts in CAMEL are adequate to design and implement their components.
Similarly, the users will provide feedback on whether the concepts in CAMEL
are satisfactory for modelling the use cases. In addition to the PaaSage project,
CAMEL has been adopted by the CACTOS34, CloudSocket35, and MUSA36 pro-
jects. This will guarantee the further development and validation of CAMEL in
a wide variety of cloud computing scenarios.

In addition, CAMEL models that conform to an old version of CAMEL often
have to be migrated to conform to its current version. In the future, we would
like to integrate a solution for the challenge of maintaining multiple versions and
automatically migrating CAMEL models [25] based on CDO and Edapt.

Finally, we will contribute to the Instance Model Ad Hoc group of TOSCA
so that the contribution of CAMEL will partly be integrated into the standard.
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