Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
SAT4J
sat4j
Commits
07d92e31
Commit
07d92e31
authored
Dec 06, 2021
by
Andre Biedenkapp
Browse files
MAINT directly log the played policy
parent
e7a421b2
Pipeline
#17848
passed with stages
in 47 minutes and 1 second
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
sat4j_env.py
View file @
07d92e31
...
...
@@ -117,6 +117,7 @@ class SAT4JEnvSelHeur(Env):
self
.
_inst_pointer
=
0
self
.
__reward_type
=
reward_type
self
.
too_simple_inst
=
[]
self
.
_last_msg
=
None
@
staticmethod
def
_save_div
(
a
,
b
):
...
...
@@ -221,6 +222,7 @@ class SAT4JEnvSelHeur(Env):
self
.
close
()
raise
Exception
(
'Connection unexpected closed'
)
self
.
conn
.
sendall
(
json
.
dumps
(
msg
).
encode
(
'utf-8'
)
+
"
\n
"
.
encode
(
'utf-8'
))
self
.
_last_msg
=
msg
s
,
r
,
d
=
self
.
_process_data
()
info
=
{}
if
d
:
...
...
@@ -238,6 +240,7 @@ class SAT4JEnvSelHeur(Env):
Initialize SAT4J
:return:
"""
self
.
_last_msg
=
None
self
.
done
=
False
self
.
_prev_state
=
None
self
.
__step
=
0
...
...
train_dqn.py
View file @
07d92e31
...
...
@@ -180,9 +180,9 @@ class DQN:
"""
print
(
'Begin Evaluation'
)
if
not
only_checkpoint
:
eval_s
,
eval_r
,
eval_d
=
self
.
eval
(
eval_eps
,
max_env_time_steps
)
eval_s
,
eval_r
,
eval_d
,
eval_pols
=
self
.
eval
(
eval_eps
,
max_env_time_steps
)
else
:
eval_s
,
eval_r
,
eval_d
=
[
-
1
],
[
-
1
],
[
-
1
]
eval_s
,
eval_r
,
eval_d
,
eval_pols
=
[
-
1
],
[
-
1
],
[
-
1
]
,
{}
checkpoint_path
=
os
.
path
.
join
(
out_dir
,
'checkpoints'
,
f
'
{
total_steps
:
05
d
}
'
)
if
not
os
.
path
.
exists
(
checkpoint_path
):
os
.
makedirs
(
checkpoint_path
)
...
...
@@ -198,7 +198,8 @@ class DQN:
eval_eps
=
eval_eps
,
eval_insts
=
self
.
_eval_env
.
instances
,
reward_per_insts
=
eval_r
,
steps_per_insts
=
eval_s
steps_per_insts
=
eval_s
,
policies_per_insts
=
eval_pols
)
if
only_checkpoint
:
eval_stats
[
'checkpoint_path'
]
=
checkpoint_path
...
...
@@ -211,9 +212,9 @@ class DQN:
# Do the same thing on the training data if required
if
self
.
_train_eval_env
is
not
None
:
if
not
only_checkpoint
:
eval_s
,
eval_r
,
eval_d
=
self
.
eval
(
eval_eps
,
max_env_time_steps
,
train_set
=
True
)
eval_s
,
eval_r
,
eval_d
,
eval_pols
=
self
.
eval
(
eval_eps
,
max_env_time_steps
,
train_set
=
True
)
else
:
eval_s
,
eval_r
,
eval_d
=
[
-
1
],
[
-
1
],
[
-
1
]
eval_s
,
eval_r
,
eval_d
,
eval_pols
=
[
-
1
],
[
-
1
],
[
-
1
]
,
{}
checkpoint_path
=
os
.
path
.
join
(
out_dir
,
'checkpoints'
,
total_steps
)
eval_stats
=
dict
(
elapsed_time
=
time
.
time
()
-
start_time
,
...
...
@@ -226,7 +227,8 @@ class DQN:
eval_eps
=
eval_eps
,
eval_insts
=
self
.
_train_eval_env
.
instances
,
reward_per_insts
=
eval_r
,
steps_per_insts
=
eval_s
steps_per_insts
=
eval_s
,
policies_per_insts
=
eval_pols
)
if
only_checkpoint
:
eval_stats
[
'checkpoint_path'
]
=
checkpoint_path
...
...
@@ -317,12 +319,18 @@ class DQN:
:returns (steps per episode), (reward per episode), (decisions per episode)
"""
steps
,
rewards
,
decisions
=
[],
[],
[]
policies
=
{}
this_env
=
self
.
_eval_env
if
not
train_set
else
self
.
_train_eval_env
with
torch
.
no_grad
():
for
e
in
range
(
episodes
):
ed
,
es
,
er
=
0
,
0
,
0
s
=
this_env
.
reset
()
if
this_env
.
instance
not
in
policies
:
policies
[
this_env
.
instance
]
=
[[]]
else
:
policies
[
this_env
.
instance
].
append
([])
policies
[
this_env
.
instance
][
-
1
].
append
(
this_env
.
_last_msg
)
for
_
in
count
():
a
=
self
.
get_action
(
s
,
0
)
if
self
.
_facts
is
not
None
:
...
...
@@ -332,6 +340,7 @@ class DQN:
ed
+=
1
ns
,
r
,
d
,
_
=
this_env
.
step
(
env_a
)
policies
[
this_env
.
instance
][
-
1
].
append
(
this_env
.
_last_msg
)
er
+=
r
es
+=
1
if
es
>=
max_env_time_steps
or
d
:
...
...
@@ -341,7 +350,7 @@ class DQN:
rewards
.
append
(
er
)
decisions
.
append
(
ed
)
return
steps
,
rewards
,
decisions
return
steps
,
rewards
,
decisions
,
policies
def
save_model
(
self
,
path
):
torch
.
save
(
self
.
_q
.
state_dict
(),
os
.
path
.
join
(
path
,
'Q'
))
...
...
@@ -475,14 +484,15 @@ if __name__ == "__main__":
else
:
print
(
f
'Validating
{
data
[
"checkpoint_path"
]
}
'
)
agent
.
load
(
data
[
'checkpoint_path'
])
eval_s
,
eval_r
,
eval_d
=
agent
.
eval
(
num_eval_episodes
,
max_env_time_steps
,
train_set
=
args
.
validate_type
==
'train'
)
eval_s
,
eval_r
,
eval_d
,
eval_p
=
agent
.
eval
(
num_eval_episodes
,
max_env_time_steps
,
train_set
=
args
.
validate_type
==
'train'
)
data
[
'avg_num_steps_per_eval_ep'
]
=
float
(
np
.
mean
(
eval_s
))
data
[
'avg_num_decs_per_eval_ep'
]
=
float
(
np
.
mean
(
eval_d
))
data
[
'avg_rew_per_eval_ep'
]
=
float
(
np
.
mean
(
eval_r
))
data
[
'std_rew_per_eval_ep'
]
=
float
(
np
.
mean
(
eval_r
))
data
[
'reward_per_insts'
]
=
eval_r
data
[
'steps_per_insts'
]
=
eval_s
data
[
'policies_per_insts'
]
=
eval_p
if
args
.
validate_type
!=
'train'
:
insts_looked_at
=
[]
counter
=
0
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment